Giải bài 1.17 trang 16 SGK Toán 8 tập 1 - Kết nối tri thức

2024-09-14 08:18:52

Đề bài

Cho hai đa thức \(A = 2{x^2}y + 3xyz - 2x + 5\) và \(B = 3xyz - 2{x^2}y + x - 4\).

a)      Tìm các đa thức A+B và A-B.

b)      Tính giá trị của các đa thức A và A+B tại x=0,5;y=-2 và z=1.

Phương pháp giải - Xem chi tiết

Muốn cộng (hay trừ) hai đa thức, ta nối hai đa thức đã cho bởi dấu (+) (hoặc dấu (-)) rồi bỏ dấu ngoặc (nếu có) và thu gọn đa thức nhận được.

Chú ý trước dấu ngoặc là dấu (-) thì khi phá ngoặc, ta đổi dấu tất cả các hạng tử trong dấu ngoặc.

Sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.

Thay các giá trị x=0,5; y=-2 và z=1 vào đa thức rồi tính giá trị.

Lời giải chi tiết

a)       

\(\begin{array}{l}A + B = 2{x^2}y + 3xyz - 2x + 5 + 3xyz - 2{x^2}y + x - 4\\ = \left( {2{x^2}y - 2{x^2}y} \right) + \left( {3xyz + 3xyz} \right) + \left( { - 2x + x} \right) + \left( {5 - 4} \right)\\ = 6xyz - x + 1\\A - B = 2{x^2}y + 3xyz - 2x + 5 - \left( {3xyz - 2{x^2}y + x - 4} \right)\\ = 2{x^2}y + 3xyz - 2x + 5 - 3xyz + 2{x^2}y - x + 4\\ = \left( {2{x^2}y + 2{x^2}y} \right) + \left( {3xyz - 3xyz} \right) + \left( { - 2x - x} \right) + \left( {5 + 4} \right)\\ = 4{x^2}y - 3x + 9\end{array}\)

b)      Thay x=0,5; y=-2 và z=1 vào A ta được:

\(A = 2.{\left( {0,5} \right)^2}.\left( { - 2} \right) + 3.0,5.\left( { - 2} \right).1 - 2.0,5 + 5 = \left( { - 1} \right) - 3 - 1 + 5 = 0.\)

Thay x=0,5; y=-2 và z=1 vào A+B ta được:

\(A + B = 6.0,5.\left( { - 2} \right).1 - 0,5 + 1 =  - 6 - 0,5 + 1 =  - 5,5.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"