Đề bài
Rút gọn biểu thức sau để thấy rằng giá trị của nó không phụ thuộc vào giá trị của biến: \(\left( {x - 5} \right)\left( {2x + 3} \right) - 2x\left( {x - 3} \right) + x + 7\).
Phương pháp giải - Xem chi tiết
Muốn nhân đơn thức với đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau. Sau đó, nhóm các hạng tử đồng dạng để thu gọn đa thức.
Lời giải chi tiết
\(\begin{array}{l}\left( {x - 5} \right)\left( {2x + 3} \right) - 2x\left( {x - 3} \right) + x + 7\\ = x.2x + x.3 - 5.2x - 5.3 - 2x.x + 2x.3 + x + 7\\ = 2{x^2} + 3x - 10x - 15 - 2{x^2} + 6x + x + 7\\ = \left( {2{x^2} - 2{x^2}} \right) + \left( {3x - 10x + 6x + x} \right) + \left( { - 15 + 7} \right)\\ = - 8\end{array}\)
Do đó, giá trị của biểu thức không phụ thuộc vào giá trị của biến.