Đề bài
Rút gọn biểu thức: \(x\left( {{x^2} - y} \right) - {x^2}\left( {x + y} \right) + xy\left( {x - 1} \right)\).
Phương pháp giải - Xem chi tiết
Muốn nhân đơn thức với đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau. Sau đó, nhóm các hạng tử đồng dạng để thu gọn đa thức.
Lời giải chi tiết
\(\begin{array}{l}x\left( {{x^2} - y} \right) - {x^2}\left( {x + y} \right) + xy\left( {x - 1} \right)\\ = x.{x^2} - xy - \left( {{x^2}.x + {x^2}y} \right) + xy.x - xy.1\\ = {x^3} - xy - {x^3} - {x^2}y + {x^2}y - xy\\ = \left( {{x^3} - {x^3}} \right) + \left( { - {x^2}y + {x^2}y} \right) + \left( { - xy - xy} \right)\\ = - 2xy\end{array}\)