Giải bài 2.6 trang 33 SGK Toán 8 tập 1 - Kết nối tri thức

2024-09-14 08:19:04

Đề bài

Chứng minh rằng với mọi số tự nhiên n, ta có:

\({\left( {n + 2} \right)^2} - {n^2}\) chia hết cho 4.

Phương pháp giải - Xem chi tiết

Sử dụng hằng đẳng thức \({a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\)

Nếu 2 số nguyên a, b thỏa mãn a chia hết cho 4 thì a.b chia hết cho 4.

Lời giải chi tiết

Ta có:

\({\left( {n + 2} \right)^2} - {n^2} = \left( {n + 2 - n} \right).\left( {n + 2 + n} \right) = 2.\left( {2n + 2} \right) = 2.2.\left( {n + 1} \right) = 4.\left( {n + 1} \right)\).

Vì \(4 \vdots 4\) nên \(4\left( {n + 1} \right) \vdots 4\) với mọi số tự nhiên n. 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"