Giải mục 3 trang 31, 32 SGK Toán 8 tập 1 - Kết nối tri thức

2024-09-14 08:19:06

HĐ3

Với hai số a,b bất kì, thực hiện phép tính \(\left( {a + b} \right).\left( {a + b} \right)\).

Từ đó rút ra liên hệ giữa \({\left( {a + b} \right)^2}\) và \({a^2} + 2ab + {b^2}\)

Phương pháp giải:

Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.

Lời giải chi tiết:

\(\left( {a + b} \right).\left( {a + b} \right) = a.a + a.b + b.a + b.b = {a^2} + \left( {ab + ab} \right) + {b^2} = {a^2} + 2ab + {b^2}\)

Từ đó ta được \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)


Luyện tập 3

  1. Khai triển \({\left( {2b + 1} \right)^2}\)
  2. Viết biểu thức \(9{y^2} + 6yx + {x^2}\) dưới dạng bình phương của một tổng.

Phương pháp giải:

Sử dụng hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)

Lời giải chi tiết:

1. \({\left( {2b + 1} \right)^2} = {\left( {2b} \right)^2} + 2.2b.1 + {1^2} = 4{b^2} + 4b + 1\)

2. \(9{y^2} + 6yx + {x^2} = {\left( {3y} \right)^2} + 2.3y.x + {x^2} = {\left( {3y + x} \right)^2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"