Đề bài
Phân tích các đa thức sau thành nhân tử:
\(\begin{array}{l}a)\,{x^2} + xy;\\b)\,6{a^2}b - 18ab;\\c)\,{x^3} - 4x;\\d)\,{x^4} - 8x.\end{array}\)
Phương pháp giải - Xem chi tiết
Sử dụng phương pháp đặt nhân tử chung và sử dụng hằng đẳng thức.
Lời giải chi tiết
\(\begin{array}{l}a)\,{x^2} + xy = x.x + x.y = x\left( {x + y} \right); \\b)\,6{a^2}b - 18ab = 6ab\left( {a - 3} \right); \\c)\,{x^3} - 4x = x\left( {{x^2} - 4} \right) = x\left( {x - 2} \right)\left( {x + 2} \right); \\d)\,{x^4} - 8x = x\left( {{x^3} - 8} \right) = x\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right).\end{array}\)