Giải mục 1 trang 42 SGK Toán 8 tập 1 - Kết nối tri thức

2024-09-14 08:19:16

HĐ1

Hãy viết đa thức \({x^2} - 2xy\) thành tích của các đa thức, khác đa thức là số.

Phương pháp giải:

Áp dụng tính chất phân phối của phép nhân đối với phép cộng để đặt nhân tử chung.

Lời giải chi tiết:

\({x^2} - 2xy = x.x - 2xy = x\left( {x - 2y} \right)\)


LT1

Phân tích các đa thức sau thành nhân tử:

a)      \(6{y^3} + 2y\)

b)      \(4\left( {x - y} \right) - 3x\left( {x - y} \right)\)

Phương pháp giải:

Áp dụng tính chất phân phối của phép nhân đối với phép cộng để đặt nhân tử chung.

Lời giải chi tiết:

a) \(6{y^3} + 2y = 2y.\left( {3{y^2} + 1} \right)\)

b) \(4\left( {x - y} \right) - 3x\left( {x - y} \right) = \left( {x - y} \right)\left( {4 - 3x} \right)\)


VD1

Giải bài toán mở đầu bằng cách phân tích \(2{x^2} + x\) thành nhân tử.

Phương pháp giải:

Áp dụng tính chất phân phối của phép nhân đối với phép cộng để đặt nhân tử chung.

\(A.B = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{A = 0}\\{B = 0}\end{array}} \right.\)

Lời giải chi tiết:

\(2{x^2} + x = 0 \Leftrightarrow x\left( {2x + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{2x + 1 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = \dfrac{{ - 1}}{2}}\end{array}} \right.\)

Vậy \(x = 0;x = \dfrac{{ - 1}}{2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"