Giải bài 2.26 trang 46 SGK Toán 8 tập 1 - Kết nối tri thức

2024-09-14 08:19:17

Đề bài

Phân tích các đa thức sau thành nhân tử:

\(\begin{array}{l}a)\,{x^2} - 6x + 9 - {y^2};\\b)\,4{x^2} - {y^2} + 4y - 4;\\c)\,xy + {z^2} + xz + yz;\\d)\,{x^2} - 4xy + 4{y^2} + xz - 2yz.\end{array}\)

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp đặt nhân tử chung, nhóm hạng tử và sử dụng hằng đẳng thức.

Lời giải chi tiết

\(\begin{array}{l}a)\,{x^2} - 6x + 9 - {y^2} \\= \left( {{x^2} - 6x + 9} \right) - {y^2} \\= {\left( {x - 3} \right)^2} - {y^2} \\= \left( {x - 3 + y} \right)\left( {x - 3 - y} \right);\\b)\,4{x^2} - {y^2} + 4y - 4 = {\left( {2x} \right)^2} - \left( {{y^2} - 4y + 4} \right) \\= {\left( {2x} \right)^2} - {\left( {y - 2} \right)^2} \\= \left( {2x - y + 2} \right)\left( {2x + y - 2} \right);\\c)\,xy + {z^2} + xz + yz \\= \left( {xy + xz} \right) + \left( {{z^2} + yz} \right) \\= x\left( {y + z} \right) + z\left( {z + y} \right) \\= \left( {y + z} \right)\left( {x + z} \right);\\d)\,{x^2} - 4xy + 4{y^2} + xz - 2yz \\= \left( {{x^2} - 4xy + 4{y^2}} \right) + \left( {xz - 2yz} \right) \\= {\left( {x - 2y} \right)^2} + z\left( {x - 2y} \right) \\= \left( {x - 2y} \right)\left( {x - 2y + z} \right).\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"