Giải bài 3.7 trang 55 SGK Toán 8 tập 1 - Kết nối tri thức

2024-09-14 08:19:29

Đề bài

Hai tia phân giác của hai góc A, B của hình thang cân ABCD (AB // CD) cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng EC = ED.

Phương pháp giải - Xem chi tiết

Chứng minh: ∆ADE = ∆BCE (g.c.g) suy ra EC = ED

Lời giải chi tiết

Vì ABCD là hình thang cân nên \(\widehat {DAB} = \widehat {ABC};\widehat C = \widehat D;A{\rm{D}} = BC\)

Theo đề bài, ta có AE, BE lần lượt là tia phân giác của \(\widehat {BA{\rm{D}}}\) và \(\widehat {ABC}\)

Suy ra \(\widehat {{A_1}} = \widehat {{A_2}};\widehat {{B_1}} = \widehat {{B_2}}\)

Mà \(\widehat {DAB} = \widehat {ABC}\) nên \(\widehat {{A_1}} = \widehat {{A_2}} = \widehat {{B_1}} = \widehat {{B_2}}\)

Xét ∆ADE và ∆BCE có:

\(\widehat {{A_2}} = \widehat {{B_2}}\) (chứng minh trên)

AD = BC (chứng minh trên)

\(\widehat {{D}} = \widehat {{C}}\) (chứng minh trên)

Do đó ∆ADE = ∆BCE (g.c.g).

Suy ra EC = ED (hai cạnh tương ứng).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"