Giải bài 3.18 trang 61 SGK Toán 8 tập 1 - Kết nối tri thức

2024-09-14 08:19:41

Đề bài

Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Một đường thẳng đi qua O lần lượt cắt các cạnh AB, CD của hình bình hành tại hai điểm M, N. Chứng minh ∆OAM = ∆OCN. Từ đó suy ra tứ giác MBND là hình bình hành.

Phương pháp giải - Xem chi tiết

Chứng minh tứ giác MBND có:

• BM // DN (vì AB // CD)

• BM = DN

Do đó, tứ giác MBND là hình bình hành.

Lời giải chi tiết

Vì ABCD là hình bình hành nên ta có:

• Hai đường chéo AC và BD cắt nhau tại O nên OA = OC, OB = OD.

• AB // CD nên AM // CN suy ra \(\widehat {OAM} = \widehat {OCN}\) (hai góc so le trong).

Xét ∆OAM và ∆OCN có:

\(\widehat {OAM} = \widehat {OCN}\) (chứng minh trên)

OA = OC (chứng minh trên)

\(\widehat {AOM} = \widehat {CON}\) (hai góc đối đỉnh)

Do đó ∆OAM = ∆OCN (g.c.g).

Suy ra AM = CN (hai cạnh tương ứng)

Mặt khác, AB = CD (chứng minh trên); AB = AM + BM; CD = CN + DN.

Suy ra BM = DN.

Xét tứ giác MBND có:

• BM // DN (vì AB // CD)

• BM = DN (chứng minh trên)

Do đó, tứ giác MBND là hình bình hành.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"