Giải bài 3.38 trang 73 SGK Toán 8 tập 1 - Kết nối tri thức

2024-09-14 08:20:12

Đề bài

Cho hình vuông ABCD. Lấy một điểm E trên cạnh CD. Tia phân giác của góc DAE cắt cạnh DC tại M. Đường thẳng qua M vuông góc với AE cắt BC tại N.

Chứng minh DM + BN = MN.

Phương pháp giải - Xem chi tiết

Chứng minh: MD = MP; ∆ADM = ∆APM (cạnh huyền – góc nhọn).

Suy ra MD = MP (hai cạnh tương ứng).

Ta có MP + PN = MN mà MD = MP

Do đó DM + BN = MN.

Lời giải chi tiết

Vì ABCD là hình vuông nên \(\widehat D = {90^o}\)

Đường thẳng qua M vuông góc với AE cắt BC tại N nên \(\widehat {APM} = {90^o}\)

Do đó \(\widehat D = \widehat {APM} = {90^o}\)

Xét ∆ADM và ∆APM có:

\(\widehat D = \widehat {APM} = {90^o}\) (chứng minh trên)

Cạnh AM chung

\(\widehat {MA{\rm{D}}} = \widehat {MAP}\)(vì AM là tia phân giác của \(\widehat {DAP}\)).

Do đó ∆ADM = ∆APM (cạnh huyền – góc nhọn).

Suy ra MD = MP (hai cạnh tương ứng).

Chứng minh tương tự ta có BN = PN.

Ta có MP + PN = MN mà MD = MP; BN = PN (chứng minh trên)

Do đó DM + BN = MN.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"