Giải mục 2 trang 79, 80 SGK Toán 8 tập 1 - Kết nối tri thức

2024-09-14 08:20:23

Luyện tập 3

Tìm các độ dài x, y trong Hình 4.6.

Phương pháp giải:

Áp dụng định lí Thalès

Lời giải chi tiết:

a) Áp dụng định lí Thalès vào ∆ABC, ta có:

\(\dfrac{{AM}}{{BM}} = \dfrac{{AN}}{{CN}}\) hay \(\dfrac{{6,5}}{x} = \dfrac{4}{2}\)

Suy ra \(x = \dfrac{{6,5.2}}{4} = 3,25\) (đvđd).

Vậy x = 3,25 (đvđd).

b) Ta có: PQ = PF + QF = 5 + 3,5 = 8,5 (đvđd).

Áp dụng định lí Thalès vào ∆PHQ, ta có:

\(\dfrac{{PE}}{{PH}} = \dfrac{{PF}}{{PQ}}\) hay \(\dfrac{4}{y} = \dfrac{5}{{8,5}}\)

Suy ra \(y = \dfrac{{4.8,5}}{5} = 6,8\) (đvđd).

Vậy y = 6,8 (đvđd)


HĐ 4

Cho ∆ABC có AB = 6 cm, AC = 9 cm. Trên cạnh AB lấy điểm B’, trên cạnh AC lấy điểm C’ sao cho AB’ = 4 cm, AC’ = 6 cm (H.4.7).

• So sánh các tỉ số \(\dfrac{{AB'}}{{AB}}\) và \(\dfrac{{AC'}}{{AC}}\)

• Vẽ đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’. Tính độ dài đoạn thẳng AC’’.

• Nhận xét gì về hai điểm C’, C’’ và hai đường thẳng B’C’, BC?

Phương pháp giải:

Áp dụng định lí Thalès vào ∆ABC

Lời giải chi tiết:

• Ta có \(\dfrac{{AB'}}{{AB}} = \dfrac{4}{6} = \dfrac{2}{3};\dfrac{{AC'}}{{AC}} = \dfrac{6}{9} = \dfrac{2}{3}\)

Do đó \(\dfrac{{AB'}}{{AB}} = \dfrac{{AC'}}{{AC}}\)

• Đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’ nên B’C’’ // BC.

Áp dụng định lí Thalès vào ∆ABC, ta có:

\(\dfrac{{AB'}}{{AB}} = \dfrac{{AC''}}{{AC}}\) hay \(\dfrac{4}{6} = \dfrac{{AC''}}{9}\)

Suy ra: \(AC'' = \dfrac{{4.9}}{6} = 6\)(cm).

Vậy AC’’ = 6 cm.

• Trên cạnh AC lấy điểm C’ sao cho AC’ = 6 cm.

Đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’ nên điểm C’’ nằm trên cạnh AC sao cho AC’’ = 6 cm.

Do đó, hai điểm C’, C’’ trùng nhau.

Vì hai điểm C’, C’’ trùng nhau mà B’C’’ // BC nên B’C’ // BC.


Vận dụng

Cây cầu AB bắc qua một con sông có chiều rộng 300 m. Để đo khoảng cách giữa hai điểm C và D trên hai bờ con sông, người ta chọn một điểm E trên đường thẳng AB sao cho ba điểm E, C, D thẳng hàng. Trên mặt đất, người ta đo được AE = 400 m, EC = 500 m. Theo em, người ta tính khoảng cách giữa C và D như thế nào?

Phương pháp giải:

Hai cạnh AC và BD thuộc hai bờ của con sông nên AC // BD, áp dụng định lí Thalès

Lời giải chi tiết:

Hai cạnh AC và BD thuộc hai bờ của con sông nên AC // BD, áp dụng định lí Thalès, ta có:

 \(\dfrac{{A{\rm{E}}}}{{AB}} = \dfrac{{CE}}{{C{\rm{D}}}}\) hay \(\dfrac{{400}}{{300}} = \dfrac{{500}}{{C{\rm{D}}}}\)

Suy ra \(C{\rm{D}} = \dfrac{{300.500}}{{400}} = 375\) (m).

Vậy khoảng cách giữa C và D bằng 375 m

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"