Đề bài
Trong một phòng học có 15 học sinh lớp 8A gồm 9 bạn nam, 6 bạn nữ và 15 học sinh lớp 8B gồm 12 bạn nam, 3 bạn nữ. Chọn ngẫu nhiên một học sing trong phòng. Tính xác suất của các biến cố sau:
a) E: "Chọn được một học sinh nam"
b) F: "Chọn được một học sinh nam lớp 8B"
c) G: "Chọn được một học sinh nữ lớp 8A"
Phương pháp giải - Xem chi tiết
- Tính tổng số học sinh của lớp 8B.
- Tính các kết quả thuận lợi của các biến cố E, F, G
- Tính xác suất của biến cố E, F, G.
Lời giải chi tiết
Có 15 học sinh lớp 8A và 15 học sinh lớp 8B => Có tổng là 30 học sinh => Có 30 kết quả có thể của hành động trên
a) Có tổng là 21 học sinh nam => Có 21 kết quả thuận lợi cho biến cố E. Vậy xác suất của biến cố E là: ": \(\frac{{21}}{{30}} = \frac{7}{{10}}\)
b) Lớp 8B gồm 12 bạn nam => Có 12 kết quả thuận lợi cho biến cố F. Vậy xác suất của biến cố F là: " \(\frac{{12}}{{30}} = \frac{2}{5}\)
c) Lớp 8A gồm 6 học sinh nữ => Có 6 kết quả thuận lợi cho biến cố G. Vậy xác suất của biến cố G là: " \(\frac{6}{{38}} = \frac{1}{5}\)