Giải bài 9.26 trang 103 SGK Toán 8 tập 2 - Kết nối tri thức

2024-09-14 08:23:08

Đề bài

Cho hai hình chữ nhật ABCD và A'B'C'D' thỏa mãn AC=3AB, B′D′=3A′B′

a) Chứng minh rằng tam giác ABC đồng dạng với tam giác A'B'C'

b) Nếu A'B' = 2AB và diện tích hình chữ nhật ABCD là 2m2 thì diện tích hình chữ nhật A'B'C'D' là bao nhiêu

Phương pháp giải - Xem chi tiết

a) Chứng minh ΔABC \( \backsim \) ΔC′D′B′  và ΔC′D′B′=ΔA′B′C′  suy ra ΔABC\( \backsim \) ΔA′B′C′

b) Xét tỉ lệ hai tam giác ABCD và A'B'C'D', có

\(\frac{{AB.BC}}{{A'B'.B'C'}} = \frac{{AB}}{{A'B'}}.\frac{{BC}}{{B'C'}} = \frac{1}{4}\)

Suy ra diện tích hình chữ nhật A'B'C'D' là bao nhiêu

Lời giải chi tiết

a) Có AC=3AB => \(\frac{{AB}}{{AC}} = \frac{1}{3}\)

- Có B′D′=3A′B′ => \(\frac{{A'B'}}{{B'D'}} = \frac{1}{3}\)

=> \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{B'D'}}\)

Xét tam giác vuông ABC (vuông tại A) và tam giác vuông A'B'D' (vuông tại C) có

=> \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{B'D'}}\)

=> ΔABC \( \backsim \) ΔC′D′B′ (1)

- Xét ΔC′D′B′ và ΔA′B′C′

Có B'C' chung, A′B′=C′D′, A′C′=B′D′ (hai hình chéo của chữ nhật)

=> ΔC′D′B′=ΔA′B′C′ (2)

Từ (1) và (2) chung =>ΔABC\( \backsim \) ΔA′B′C′

b) - Vì A′B′=2AB => \(\frac{{AB}}{{A'B'}} = \frac{1}{2}\)

mà ΔABC  ΔA'B'C' => \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{1}{2}\)

- Có diện tích ABCD là: AB.BC

  Có diện tích A'B'C'D' là: A′B′.B′C′

=> Xét tỉ lệ hai tam giác ABCD và A'B'C'D', có

\(\frac{{AB.BC}}{{A'B'.B'C'}} = \frac{{AB}}{{A'B'}}.\frac{{BC}}{{B'C'}} = \frac{1}{4}\)

=> \(S_{A′B′C′D′}=4S_{ABCD}\)

mà \(S_{ABCD}=2m^2\) => \(S_{A′B′C′D′}=8m^2\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"