Giải bài 9.25 trang 103 SGK Toán 8 tập 2 - Kết nối tri thức

2024-09-14 08:23:09

Đề bài

Cho góc nhọn xOy, các điểm A, N nằm trên tia Ox, các điểm B, M nằm trên tia Oy sao cho AM, BN lần lượt vuông góc với Oy, Ox. Chứng minh tam giác OAM đồng dạng với tam giác OBN.

Phương pháp giải - Xem chi tiết

Chứng minh hai tam giác vuông OBN (vuông tại N) và tam giác OAM (vuông tại M) có: \(\widehat {NBO} = \widehat {OM{\rm{A}}}\)

Lời giải chi tiết

 Xét tam giác OBN có: \(\widehat {BON} + \widehat {ONB} + \widehat {NBO} = {180^o}\)

- Xét tam giác MOA có: \(\widehat {MOA} + \widehat {OM{\rm{A}}} + \widehat {OAM} = {180^o}\)

mà \(\widehat{ONB}= \widehat{OMA}=90°\)

      góc O chung

=> \(\widehat {NBO} = \widehat {OM{\rm{A}}}\)

- Xét hai tam giác vuông OBN (vuông tại N) và tam giác OAM (vuông tại M) có: \(\widehat {NBO} = \widehat {OM{\rm{A}}}\)

=> ΔOAM  ΔOBN

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"