Giải bài 5 trang 135 SGK Toán 8 tập 2 - Kết nối tri thức

2024-09-14 08:23:59

Đề bài

Cho biểu thức:

\(P = \left( {\frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}}} \right):1 + \frac{{{x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}}\)

Trong đó x và y là hai biến thỏa mãn điều kiện \({x^2}{y^2} - 1 \ne 0\)

a) Tính tổng \(A = \frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}}\)\(B = 1 + \frac{{{x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}}\)

b) Từ kết quả câu a) hãy thu gọn P và giải thích tại sao giá trị của P không phụ thuộc vào giá trị của biến y.

c) Chứng minh đẳng thức: \(P = 1 - \frac{{{{\left( {1 - x} \right)}^2}}}{{1 - {x^2}}}\)

d) Sử dụng câu c) hãy tìm các giá trị của x và y sao cho P = 1

Phương pháp giải - Xem chi tiết

Rút gọn phân thức theo quy tắc rút gọn

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}A = \frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}}\\A = \frac{{\left( {x + y} \right)\left( {1 + xy} \right) + \left( {x - y} \right)\left( {1 - xy} \right)}}{{1 - {x^2}{y^2}}}\\A = \frac{{x + {x^2}y + y + x{y^2} + x - {x^2}y - y + x{y^2}}}{{1 - {x^2}{y^2}}}\\A = \frac{{2{\rm{x}} + 2{\rm{x}}{y^2}}}{{1 - {x^2}{y^2}}}\end{array}\)

\(\begin{array}{l}B = 1 + \frac{{{x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}}\\B = \frac{{1 - {x^2}{y^2} + {x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}}\\B = \frac{{1 + {x^2} + {y^2} + {x^2}{y^2}}}{{1 - {x^2}{y^2}}}\end{array}\)

b) Ta có:

\(\begin{array}{l}P = \left( {\frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}}} \right):1 + \frac{{{x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}}\\P = \frac{{2{\rm{x}} + 2{\rm{x}}{y^2}}}{{1 - {x^2}{y^2}}}:\frac{{1 + {x^2} + {y^2} + {x^2}{y^2}}}{{1 - {x^2}{y^2}}}\\P = \frac{{2{\rm{x}} + 2{\rm{x}}{y^2}}}{{1 - {x^2}{y^2}}}.\frac{{1 - {x^2}{y^2}}}{{1 + {x^2} + {y^2} + {x^2}{y^2}}}\\P = \frac{{2{\rm{x}}\left( {1 + {y^2}} \right)}}{{\left( {1 + {y^2}} \right) + \left( {{x^2} + {x^2}{y^2}} \right)}}\\P = \frac{{2{\rm{x}}\left( {1 + {y^2}} \right)}}{{\left( {1 + {y^2}} \right) + {x^2}\left( {1 + {y^2}} \right)}}\\P = \frac{{2{\rm{x}}\left( {1 + {y^2}} \right)}}{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}} = \frac{{2{\rm{x}}}}{{1 + {x^2}}}\end{array}\)

Vậy giá trị của P không phụ thuộc vào giá trị của biến y.

c) Ta có:

\(\begin{array}{l}1 - \frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}}\\ = \frac{{1 + {x^2} - 1 + 2{\rm{x}} - {x^2}}}{{1 + {x^2}}}\\ = \frac{{2{\rm{x}}}}{{1 + {x^2}}} = P\end{array}\)

d) Ta có:

\(\begin{array}{l}1 - \frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}} = 1\\ \Rightarrow \frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}} = 0\\ \Rightarrow {\left( {1 - x} \right)^2} = 0\\ \Rightarrow 1 - x = 0\\ \Rightarrow x = 1\\\end{array}\)

Vậy x = 1.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"