Đề bài
Thu gọn và tìm bậc của mỗi đa thức sau:
a) \(M = x - 3 - 4y + 2x - y\)
b) \(N = - {x^2}t + 13{t^3} + x{t^2} + 5{t^3} - 4\)
Phương pháp giải - Xem chi tiết
Để thu gọn một đa thức, ta nhóm các hạng tử đồng dạng với nhau và cộng các hạng tử đồng dạng với nhau.
Bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức gọi là bậc của đa thức đó.
Lời giải chi tiết
a) Ta có:
\(M = x - 3 - 4y + 2x - y\)
\(M = \left( {x + 2x} \right) + \left( { - 4y - y} \right) - 3\)
\(M = 3x - 5y - 3\)
Bậc của đa thức \(M\) là: \(1\)
b) Ta có:
\(N = - {x^2}t + 13{t^3} + x{t^2} + 5{t^3} - 4\)
\(N = \left( {13{t^3} + 5{t^3}} \right) - {x^2}t + x{t^2} - 4\)
\(N = 18{t^3} - {x^2}t + x{t^2} - 4\)
Bậc của đa thức \(N\) là: \(3\)