HĐ4
Sử dụng quy tắc chuyển vế và các tính chất của phép toán, hoàn thành các biến đổi sau vào vở:
\(\begin{array}{l}{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\\{a^3} + {b^3} = {\left( {a + b} \right)^3} - 3{a^2}b - 3a{b^2}\\\;\;\;\;\;\;\;\;\;\; = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\\\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left( {...} \right)\\\;\;\;\;\;\;\;\;\;\; = ...\end{array}\) \(\begin{array}{l}{\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\\{a^3} - {b^3} = {\left( {a - b} \right)^3} + 3{a^2}b - 3a{b^2}\\\;\;\;\;\;\;\;\;\;\; = {\left( {a - b} \right)^3} + 3ab\left( {a - b} \right)\\\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left( {...} \right)\\\;\;\;\;\;\;\;\;\;\; = ...\end{array}\)
Phương pháp giải:
Áp dụng quy tắc chuyển vế, các tính chất của phép toán, hằng đẳng thức: Bình phương của một tổng, một hiệu.
Lời giải chi tiết:
\(\begin{array}{l}{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\\{a^3} + {b^3} = {\left( {a + b} \right)^3} - 3{a^2}b - 3a{b^2}\\\;\;\;\;\;\;\;\;\;\; = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\\\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left[ {{{\left( {a + b} \right)}^2} - 3ab} \right]\\\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left[ {{a^2} + 2ab + {b^2} - 3ab} \right]\\\;\;\;\;\;\;\;\;\;\; = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\end{array}\) \(\begin{array}{l}{\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\\{a^3} - {b^3} = {\left( {a - b} \right)^3} + 3{a^2}b - 3a{b^2}\\\;\;\;\;\;\;\;\;\;\; = {\left( {a - b} \right)^3} + 3ab\left( {a - b} \right)\\\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left[ {{{\left( {a - b} \right)}^2} + 3ab} \right]\\\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left[ {{a^2} - 2ab + {b^2} + 3ab} \right]\\\;\;\;\;\;\;\;\;\;\; = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\end{array}\)
Thực hành 7
Viết các đa thức sau dưới dạng tích:
a) \(8{y^3} + 1\)
b) \({y^3} - 8\)
Phương pháp giải:
Biến đổi đa thức về dạng tổng, hiệu của hai lập phương rồi áp dụng hằng đẳng thức tổng, hiệu của hai lập phương.
Lời giải chi tiết:
a) \(8{y^3} + 1 = {\left( {2y} \right)^3} + {1^3} = \left( {2y + 1} \right)\left[ {{{\left( {2y} \right)}^2} - 2y.1 + {1^2}} \right] = \left( {2y + 1} \right)\left( {4{y^2} - 2y + 1} \right)\)
b) \({y^3} - 8 = {y^3} - {2^3} = \left( {y - 2} \right)\left( {{y^2} + 2y + {2^2}} \right) = \left( {y - 2} \right)\left( {{y^2} + 2y + 4} \right)\)
Thực hành 8
Tính:
a) \(\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)\)
b) \(\left( {2x - \dfrac{1}{2}} \right)\left( {4{x^2} + x + \dfrac{1}{4}} \right)\)
Phương pháp giải:
Biến đổi tích của hai đa thức về dạng vế phải của hằng đẳng thức: Tổng, hiệu của hai lập phương.
Lời giải chi tiết:
a) \(\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) = \left( {x + 1} \right)\left( {{x^2} - x.1 + {1^2}} \right) = {x^3} + {1^3} = {x^3} + 1\)
b) \(\left( {2x - \dfrac{1}{2}} \right)\left( {4{x^2} + x + \dfrac{1}{4}} \right) = \left( {2x - \dfrac{1}{2}} \right)\left[ {{{\left( {2x} \right)}^2} + 2x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right] = {\left( {2x} \right)^3} - {\left( {\dfrac{1}{2}} \right)^3} = 8{x^3} - \dfrac{1}{8}\)
Vận dụng 4
Từ một khối lập phương có cạnh bằng \(2x + 1\), ta cắt bỏ một khối lập phương có cạnh bằng \(x + 1\) (xem Hình 5). Tính thể tích phần còn lại, viết kết quả dưới dạng đa thức.
Phương pháp giải:
Áp dụng công thức tính thể tích của hình lập phương
Áp dụng hằng đẳng thức: Hiệu của hai lập phương
Lời giải chi tiết:
Thể tích phần còn lại của khối lập phương là:
\(\begin{array}{l}{\left( {2x + 1} \right)^3} - {\left( {x + 1} \right)^3}\\ = \left[ {\left( {2x + 1} \right) - \left( {x + 1} \right)} \right].\left[ {{{\left( {2x + 1} \right)}^2} + \left( {2x + 1} \right)\left( {x + 1} \right) + {{\left( {x + 1} \right)}^2}} \right]\\ = x.\left[ {4{x^2} + 4x + 1 + 2{x^2} + 2x + x + 1 + {x^2} + 2x + 1} \right]\\ = x.\left( {7{x^2} + 9x + 3} \right)\\ = 7{x^3} + 9{x^2} + 3x\end{array}\)