Giải Bài 3 trang 35 SGK Toán 8 tập 1 – Chân trời sáng tạo

2024-09-14 08:24:38

Đề bài

Thực hiện các phép tính sau:

a) \(\dfrac{{x + 2}}{{x - 1}} - \dfrac{{x - 3}}{{x - 1}} + \dfrac{{x - 4}}{{1 - x}}\)

b) \(\dfrac{1}{{x + 5}} - \dfrac{1}{{x - 5}} + \dfrac{{2x}}{{{x^2} - 25}}\)

c) \(x + \dfrac{{2{y^2}}}{{x + y}} - y\)

Phương pháp giải - Xem chi tiết

Đưa các phân thức về cùng mẫu rồi thực hiện phép tính với các phân thức cùng mẫu đó.

Lời giải chi tiết

a) ĐKXĐ: \(x \ne 1\)

\(\dfrac{{x + 2}}{{x - 1}} - \dfrac{{x - 3}}{{x - 1}} + \dfrac{{x - 4}}{{1 - x}}\) \( = \dfrac{{x + 2}}{{x - 1}} - \dfrac{{x - 3}}{{x - 1}} - \dfrac{{x - 4}}{{x - 1}} = \dfrac{{x + 2 - x + 3 - x + 4}}{{x - 1}} = \dfrac{{9 - x}}{{x - 1}}\)

b) ĐKXĐ: \(x \ne  \pm 5\)

\(\dfrac{1}{{x + 5}} - \dfrac{1}{{x - 5}} + \dfrac{{2x}}{{{x^2} - 25}}\) \( = \dfrac{{\left( {x - 5} \right)}}{{\left( {x + 5} \right)\left( {x - 5} \right)}} - \dfrac{{\left( {x + 5} \right)}}{{\left( {x + 5} \right)\left( {x - 5} \right)}} + \dfrac{{2x}}{{\left( {x + 5} \right)\left( {x - 5} \right)}} = \dfrac{{x - 5 - x - 5 + 2x}}{{\left( {x + 5} \right)\left( {x - 5} \right)}} = \dfrac{{2x - 10}}{{\left( {x + 5} \right)\left( {x - 5} \right)}}\)

\( = \dfrac{{2\left( {x - 5} \right)}}{{\left( {x + 5} \right)\left( {x - 5} \right)}} = \dfrac{2}{{x + 5}}\)  

c) ĐKXĐ: \(x \ne  - y\)

\(x + \dfrac{{2{y^2}}}{{x + y}} - y\) \( = \dfrac{{x\left( {x + y} \right)}}{{x + y}} + \dfrac{{2{y^2}}}{{x + y}} - \dfrac{{y\left( {x + y} \right)}}{{x + y}} = \dfrac{{{x^2} + xy + 2{y^2} - xy - {y^2}}}{{x + y}} = \dfrac{{{x^2} + {y^2}}}{{x + y}}\)  

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"