Giải mục 2 trang 37, 38 SGK Toán 8 tập 1 – Chân trời sáng tạo

2024-09-14 08:24:42

HĐ2

Máy A xát được \(x\) tấn gạo trong \(a\) giờ, máy B xát được \(y\) tấn gạo trong \(b\) giờ.

a) Viết các biểu thức biểu thị số tấn gạo mỗi máy xát được trong 1 giờ (gọi là công suất của máy)

b) Công suất của máy A gấp bao nhiêu lần số máy B? Viết biểu thức biểu thị số lần này.

c) Tính giá trị của biểu thức ở câu b) khi \(x = 3\), \(y = 2\), \(b = 4\)

Phương pháp giải:

Thực hiện phép tính chia để trả lời câu hỏi a, b

Lời giải chi tiết:

a) Biểu thức biểu thị số tấn gạo máy A xát được trong 1 giờ là: \(x:a = \dfrac{x}{a}\) (tấn)

Biểu thức biểu thị số tấn gạo máy B xát được trong 1 giờ là: \(y:b = \dfrac{y}{b}\) (tấn)

b) Công suất máy A gấp số lần máy B là: \(\dfrac{x}{a}:\dfrac{y}{b} = \dfrac{x}{a} \cdot \dfrac{b}{y} = \dfrac{{bx}}{{ay}}\) (lần)

c) Khi \(x = 3\); \(a = 5\); \(y = 2\); \(b = 4\) ta có: \(\dfrac{{4.3}}{{5.2}} = \dfrac{{12}}{{10}} = 1,2\)


Thực hành 2

Thực hiện các phép tính sau:

a) \(\dfrac{{{x^2} - 9}}{{x - 2}}:\dfrac{{x - 3}}{x}\)                       

b) \(\dfrac{x}{{{z^2}}} \cdot \dfrac{{xz}}{{{y^3}}}:\dfrac{{{x^3}}}{{yz}}\)                   

c) \(\dfrac{2}{x} - \dfrac{2}{x}:\dfrac{1}{x} + \dfrac{4}{x} \cdot \dfrac{{{x^2}}}{2}\)   

Phương pháp giải:

a) Thực hiện phép chia phân thức

b) Thực hiện phép nhân, chia phân thức

c) Thực hiện phép nhân, chia, cộng, trừ phân thức

Lời giải chi tiết:

a) \(\dfrac{{{x^2} - 9}}{{x - 2}}:\dfrac{{x - 3}}{x}\) \( = \dfrac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{x - 2}}.\dfrac{x}{{x - 3}} = \dfrac{{x\left( {x + 3} \right)}}{{x - 2}}\)

b) \(\dfrac{x}{{{z^2}}} \cdot \dfrac{{xz}}{{{y^3}}}:\dfrac{{{x^3}}}{{yz}}\) \( = \dfrac{x}{{{z^2}}} \cdot \dfrac{{xz}}{{{y^3}}} \cdot \dfrac{{yz}}{{{x^3}}} = \dfrac{{{x^2}y{z^2}}}{{{x^3}{y^3}{z^2}}} = \dfrac{1}{{x{y^2}}}\)

c) \(\dfrac{2}{x} - \dfrac{2}{x}:\dfrac{1}{x} + \dfrac{4}{x} \cdot \dfrac{{{x^2}}}{2}\) \( = \dfrac{2}{x} - \dfrac{2}{x} \cdot \dfrac{x}{1} + \dfrac{4}{x} \cdot \dfrac{{{x^2}}}{2} = \dfrac{2}{x} - 2 + 2x = \dfrac{2}{x} - \dfrac{{2x}}{x} + \dfrac{{2{x^2}}}{x} = \dfrac{{2{x^2} - 2x + 2}}{x}\)


Vận dụng

Đường sắt và đường bộ từ thành phố A đến thành phố B có độ dài bằng nhau và bằng \(s\) (km). Thời gian để đi từ A đến B của tàu hỏa là \(a\) (giờ), của ô tô khách là \(b\) (giờ) (\(a < b\)). Tốc độ của tàu hỏa gấp bao nhiêu lần tốc độ của ô tô? Tính giá trị này khi \(s = 350\), \(a = 5\), \(b = 7\).

Phương pháp giải:

Sử dụng công thức tính vận tốc \(v = \dfrac{s}{t}\)

Lời giải chi tiết:

Tốc độ của tàu hỏa là: \(\dfrac{s}{a}\) (km/giờ)

Tốc độ của ô tô khách là: \(\dfrac{s}{b}\) (km/giờ)

Tốc độ của tàu hỏa gấp tốc độ của ô tô khách số lần là: \(\dfrac{s}{a}:\dfrac{s}{b} = \dfrac{s}{a} \cdot \dfrac{b}{s} = \dfrac{b}{a}\) (lần)

Thay \(s = 350\); \(a = 5\); \(b = 7\) ta có:

\(\dfrac{b}{a} = \dfrac{7}{5}\)  

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"