Giải bài 6 trang 67 SGK Toán 8 – Chân trời sáng tạo

2024-09-14 08:25:17

Đề bài

Ta gọi tứ giác ABCD với AB = AD, CB = CD (hình 13) là hình “cái diều”.

a. Chứng minh rằng AC là đường trung trực của BD.

b. Cho biết \(\widehat B = {95^0},\widehat C = {35^0}.\)Tính \(\widehat A\) \(\widehat D\)

Phương pháp giải - Xem chi tiết

a) Sử dụng tính chất của đường trung trực để chứng minh \(AC\) là trung trực của \(BD\)

b) Sử dụng tính chất tổng bốn góc trong tứ giác \(ABCD\)

Lời giải chi tiết

a) Ta có:

\(AB = AD\) (gt) nên \(A\) thuộc đường trung trực của \(BD\)

\(CB = CD\) (gt) nên \(C\) thuộc đường trung trực của \(BD\)

Vậy \(AC\) là đường trung trực của \(BD\)

b) Xét \(\Delta ABC\)\(\Delta ADC\) ta có:

\(AB = AD\) (gt)

\(BC = CD\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta ADC\) (c-g-c)

Suy ra: \(\widehat {ABC} = \widehat {ADC} = 95^\circ \) (hai góc tương ứng)

Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên:

\(\widehat A = 360^\circ  - \left( {95^\circ  + 35^\circ  + 95^\circ } \right) = 135^\circ \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"