Đề bài
Thời gian \(t\)(giờ) của một vật chuyển động đều trên quãng đường 20 km tỉ lệ nghịch với tốc độ \(v\) (km/h) của nó theo công thức \(t = \dfrac{{20}}{v}\). Tính và lập bảng các giá trị tương ứng của \(t\) với \(v\) lần lượt nhận các giá trị 10; 20; 40; 80.
Phương pháp giải - Xem chi tiết
Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có \(y = f\left( a \right)\) thì \(f\left( a \right)\) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Với \(v = a \Rightarrow t\left( a \right) = \dfrac{{20}}{a}\)
Lời giải chi tiết
\(v = 10 \Rightarrow t\left( {10} \right) = \dfrac{{20}}{{10}} = 2\);
\(v = 20 \Rightarrow t\left( {20} \right) = \dfrac{{20}}{{20}} = 1\);
\(v = 40 \Rightarrow t\left( {40} \right) = \dfrac{{20}}{{40}} = 0,5\);
\(v = 80 \Rightarrow t\left( {80} \right) = \dfrac{{20}}{{80}} = 0,25\).
Ta lập được bảng sau:
\(v\) | 10 | 20 | 40 | 80 |
t | 2 | 1 | 0,5 | 0,25 |