Giải bài 6 trang 50 SGK Toán 8 tập 2– Chân trời sáng tạo

2024-09-14 08:27:52

Đề bài

Quan sát Hình 24, chỉ ra các cặp đường thẳng song song và chứng minh điều ấy.

 

Phương pháp giải - Xem chi tiết

Định lí Thales đảo

Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

Lời giải chi tiết

a) Theo hình vẽ ta có:

\(I\) là trung điểm của \(MN\) nên \(IM = IN = \frac{1}{2}MN\);

\(J\) là trung điểm của \(MP\) nên \(JM = JP = \frac{1}{2}MP\);

\(K\) là trung điểm của \(NP\) nên \(KN = KP = \frac{1}{2}NP\).

Xét tam giác \(MNP\) có:

\(\frac{{IM}}{{MN}} = \frac{1}{2};\frac{{MJ}}{{PJ}} = \frac{1}{2} \Rightarrow \frac{{IM}}{{MN}} = \frac{{MJ}}{{PJ}} \Rightarrow IJ//NP\) (Định lí Thales đảo);

\(\frac{{PJ}}{{PM}} = \frac{1}{2};\frac{{PK}}{{PN}} = \frac{1}{2} \Rightarrow \frac{{PJ}}{{PM}} = \frac{{PK}}{{PN}} \Rightarrow JK//MN\) (Định lí Thales đảo);

\(\frac{{NK}}{{NP}} = \frac{1}{2};\frac{{IN}}{{MN}} = \frac{1}{2} \Rightarrow \frac{{NK}}{{NP}} = \frac{{IN}}{{MN}} \Rightarrow IK//MN\) (Định lí Thales đảo).

b) Xét tam giác \(ABC\) có:

\(\frac{{AN}}{{NC}} = \frac{3}{{7,5}} = \frac{2}{5};\frac{{AM}}{{BM}} = \frac{2}{5} \Rightarrow \frac{{AN}}{{NC}} = \frac{{AM}}{{BM}} \Rightarrow MN//BC\)(Định lí Thales đảo);

\(\frac{{CN}}{{AN}} = \frac{{7,5}}{3} = \frac{5}{2};\frac{{CP}}{{PB}} = \frac{{10}}{4} = \frac{5}{2} \Rightarrow \frac{{CN}}{{AN}} = \frac{{CP}}{{BP}} \Rightarrow NP//AB\)(Định lí Thales đảo);

\(\frac{{BM}}{{AM}} = \frac{5}{2};\frac{{PB}}{{CP}} = \frac{4}{{10}} = \frac{2}{5} \Rightarrow \frac{{BM}}{{AM}} \ne \frac{{BP}}{{CP}} \Rightarrow NP\) không song song với \(AB\)(Định lí Thales đảo).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"