HĐ1
a) Cho hai số 5 và 8. Hãy tính tỉ số giữa hai số đã cho.
b) Hãy đo và tính tỉ số giữa hai độ dài (theo mm) của hai đoạn thẳng \(AB\) và \(CD\) trong Hình 1.
Phương pháp giải:
Tỉ số giữa hai đoạn thẳng là tỉ số độ dài của hai đoạn thẳng khi cùng đơn vị đo.
Lời giải chi tiết:
a) Tỉ số giữa hai số 5 và 8 là \(5:8 = \frac{5}{8}\).
b) Ta có: AB = 35mm; CD = 45mm
Tỉ số giữa hai đoạn thẳng \(AB\) và \(CD\) là \(AB:CD = \frac{{AB}}{{CD}} = \frac{35}{45}=\frac{7}{9}\).
TH1
Hãy tính tỉ số của hai đoạn thẳng \(AB\) và \(CD\) trong các trường hợp sau:
a) \(AB = 6cm;CD = 8cm\);
b) \(AB = 1,2m;CD = 42cm\).
Phương pháp giải:
Tỉ số giữa hai đoạn thẳng là tỉ số độ dài của hai đoạn thẳng khi cùng đơn vị đo.
Lời giải chi tiết:
a) Tỉ số giữa hai đoạn thẳng \(AB\) và \(CD\) là \(AB:CD = \frac{{AB}}{{CD}} = \frac{6}{8} = \frac{3}{4}\).
b) Đổi \(1,2m = 120cm\)
Tỉ số giữa hai đoạn thẳng \(AB\) và \(CD\) là \(AB:CD = \frac{{AB}}{{CD}} = \frac{{120}}{{42}} = \frac{{20}}{7}\).
HĐ2
So sánh tỉ số của hai đoạn thẳng \(AB\) và \(CD\) với tỉ số của hai đoạn thẳng \(EF\) và \(MN\) trong Hình 2.
Phương pháp giải:
Ta tính tỉ số của hai đoạn thẳng \(AB\) và \(CD\) ; tỉ số của hai đoạn thẳng \(EF\) và \(MN\) sau đó so sánh.
Lời giải chi tiết:
Ta coi mỗi vạch chia là 1 đơn vị. Do đó, độ dài các đoạn thẳng là \(AB = 2\) đơn vị; \(CD = 3\) đơn vị; \(EF = 4\) đơn vị; \(MN = 6\) đơn vị.
Tỉ số giữa hai đoạn thẳng \(AB\) và \(CD\) là \(AB:CD = \frac{{AB}}{{CD}} = \frac{2}{3}\).
Tỉ số giữa hai đoạn thẳng \(EF\) và \(MN\) là \(EF:MN = \frac{{EF}}{{MN}} = \frac{4}{6} = \frac{2}{3}\).
Do đó, tỉ số của hai đoạn thẳng \(AB\) và \(CD\) bằng tỉ số của hai đoạn thẳng \(EF\) và \(MN\) .
TH2
Trong Hình 3, chứng minh rằng:
a) \(AB\) và \(BC\) tỉ lệ với \(A'B'\) và \(B'C'\);
b) \(AC\) và \(A'C'\) tỉ lệ với \(AB\) và \(A'B'\).
Phương pháp giải:
Tỉ số giữa hai đoạn thẳng là tỉ số độ dài của hai đoạn thẳng khi cùng đơn vị đo.
Lời giải chi tiết:
Ta xem độ dài một cạnh của hình vuông nhỏ là \(a\) và đường chéo của một hình vuông nhỏ là \(b\).
Khi đó, độ dài các đoạn thẳng là
\(AB = b;BC = 3b;A'B' = a;B'C' = 3a;AC = 4b;A'C' = 4a\)
a) Tỉ số của \(AB\) và \(BC\)là \(\frac{{AB}}{{BC}} = \frac{b}{{3b}} = \frac{1}{3}\).
Tỉ số của \(A'B'\) và \(B'C'\) là \(\frac{{A'B'}}{{B'C'}} = \frac{a}{{3a}} = \frac{1}{3}\).
Do đó, \(AB\) và \(BC\) tỉ lệ với \(A'B'\) và \(B'C'\).
b) Tỉ số của \(AC\) và \(A'C'\)là \(\frac{{AC}}{{A'C'}} = \frac{{4b}}{{4a}} = \frac{b}{a}\).
Tỉ số của \(AB\) và \(A'B'\) là \(\frac{{AB}}{{A'B'}} = \frac{b}{a}\).
Do đó, \(AC\) và \(A'C'\) tỉ lệ với \(AB\) và \(A'B'\).
VD1
Hãy tìm các đoạn thẳng tỉ lệ trong hình vẽ sơ đồ một góc công viên ở Hình 4.
Phương pháp giải:
Tỉ số giữa hai đoạn thẳng là tỉ số độ dài của hai đoạn thẳng khi cùng đơn vị đo.
Lời giải chi tiết:
Ta có:
\(AD = 1,5m;AE = 3m;BD = 3m;EC = 6m;\)
\(AB = AD + DB = 1,5 + 3 = 4,5m;AC = AE + EC = 3 + 6 = 9m\)
Ta có:
\(\frac{{AD}}{{BD}} = \frac{{1,5}}{3} = \frac{1}{2};\frac{{AE}}{{EC}} = \frac{3}{6} = \frac{1}{2}\). Do đó, \(AD\) và \(BD\) tỉ lệ với \(AE\) và \(EC\).
\(\frac{{AD}}{{AB}} = \frac{{1,5}}{{4,5}} = \frac{1}{3};\frac{{AE}}{{AC}} = \frac{3}{9} = \frac{1}{3}\). Do đó, \(AD\) và \(AB\) tỉ lệ với \(AE\) và \(AC\).
\(\frac{{AB}}{{BD}} = \frac{{4,5}}{3} = \frac{3}{2};\frac{{AC}}{{EC}} = \frac{9}{6} = \frac{3}{2}\). Do đó, \(AB\) và \(BD\) tỉ lệ với \(AC\) và \(EC\).