1. Tính chất đường phân giác của tam giác
Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của hai đoạn ấy.
AD là đường phân giác của góc A trong \(\Delta ABC\), \(D \in BC\)
\( \Rightarrow \frac{{DB}}{{DC}} = \frac{{AB}}{{AC}}\)
Ví dụ:
RS là tia phân giác của góc \(\widehat {PRQ}\). Sử dụng tính chất đường phân giác, ta có:
\(\begin{array}{l}\frac{{SQ}}{{SR}} = \frac{{RQ}}{{RP}}\\ \Leftrightarrow \frac{{10}}{5} = \frac{x}{6}\\ \Leftrightarrow 2 = \frac{x}{6}\\ \Leftrightarrow x = 12\end{array}\)
Vậy độ dài đoạn thẳng RQ là 12.