Đề bài
Tính độ dài \(x\) trong Hình 9
Phương pháp giải - Xem chi tiết
Định lí đường phân giác
Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết
a) Xét tam giác \(ABC\) có \(AD\) là đường phân giác của \(\widehat A\). Theo định lí đường phân giác ta có:
\(\frac{{BD}}{{AB}} = \frac{{DC}}{{AC}} \Leftrightarrow \frac{x}{{4,5}} = \frac{5}{{7,2}} \Rightarrow x = \frac{{4,5.5}}{{7,2}} = 3,125\)
Vậy \(x = 3,125\).
b) Xét tam giác \(MNP\) có \(MI\) là đường phân giác của \(\widehat M\). Theo định lí đường phân giác ta có: \(O\)
\(\frac{{NI}}{{MN}} = \frac{{IP}}{{MP}} \Leftrightarrow \frac{3}{5} = \frac{{IP}}{{8,5}} \Rightarrow IP = \frac{{3.8,5}}{5} = 5,125\)
Ta có: \(NP = NI + IP = 3 + 5,1 = 8,1\)
Vậy \(x = 8,1\).