Giải bài 4 trang 66 SGK Toán 8 tập 2– Chân trời sáng tạo

2024-09-14 08:28:28

Đề bài

Trong Hình 14, cho biết \(AB//CD\)

a) Chứng minh rằng \(\Delta AEB\backsim\Delta DEC\).

b) Tìm \(x\).

Phương pháp giải - Xem chi tiết

Nếu một đường thẳng cắt phần kéo dài của hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.

Lời giải chi tiết

a) Xét tam giác \(ABE\) có:

\(AB//CD\) và \(C,D\) cắt \(BE;AE\) lần lượt tại \(C,D\).

Do đó, \(\Delta AEB\backsim\Delta DEC\) (định lí)

b) Vì \(\Delta AEB\backsim\Delta DEC\) nên \(\frac{{AE}}{{ED}} = \frac{{AB}}{{CD}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).

Thay số ta được:

\(\frac{{x - 2}}{{10}} = \frac{3}{5} \Rightarrow x - 2 = \frac{{10.3}}{5} = 6 \Rightarrow x = 6 + 2 = 8\)

Vậy \(x = 8\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"