Đề bài
Trong các hình dưới đây, hai hình nào đồng dạng với nhau?
Phương pháp giải - Xem chi tiết
Hai hình \(H\) và hình \(H'\) được gọi là đồng dạng nếu có hình đồng dạng phối của của hình \(H\) bằng hình \(H'\).
Lời giải chi tiết
- Xét hình 16a và hình 16b ta có:
Tỉ lệ của chiều dài – chiều dài và chiều rộng – chiều rộng của hình 16a và hình 16b lần lượt là:
\(\frac{3}{{4,5}} = \frac{2}{3};\frac{{2,6}}{{3,9}} = \frac{2}{3}\). Do đó, tồn tại hình động dạng phối cảnh của hình 16a bằng hình 16b. Do đó, hình 16a và hình 16b đồng dạng với nhau.
- Xét hình 16b và hình 16c ta có:
Tỉ lệ của chiều dài – chiều dài và chiều rộng – chiều rộng của hình 16b và hình 16c lần lượt là:
\(\frac{{4,5}}{3} = 1,5;\frac{{3,9}}{2} = 1,95\). Do đó, không tồn tại hình động dạng phối cảnh nào của hình 16b để bằng hình 16c. Do đó, hình 16b và hình 16c không đồng dạng với nhau.
- Xét hình 16c và hình 16c ta có:
Tỉ lệ của chiều dài – chiều dài và chiều rộng – chiều rộng của hình 16a và hình 16c lần lượt là:
\(\frac{3}{3} = 1;\frac{{2,6}}{2} = 1,3\). Do đó, không tồn tại hình động dạng phối cảnh nào của hình 16a để bằng hình 16c. Do đó, hình 16a và hình 16c không đồng dạng với nhau.