Giải bài 15 trang 86 SGK Toán 8 tập 2– Chân trời sáng tạo

2024-09-14 08:29:07

Đề bài

Cho tam giác \(ABC\) nhọn có hai đường cao \(BM,CN\) cắt nhau tại \(H\).

a) Chứng minh rằng \(\Delta AMN\backsim\Delta ABC\).

b) Phân giác của \(\widehat {BAC}\) cắt \(MN\) và \(BC\) lần lượt tại \(I\) và \(K\). Chứng minh rằng \(\frac{{IM}}{{IN}} = \frac{{KB}}{{KC}}\).

Phương pháp giải - Xem chi tiết

- Trường hợp đồng dạng thứ ba của tam giác góc – góc.

- Trường hợp đồng dạng thứ hai của tam giác cạnh – góc – cạnh.

- Hai tam giác đồng dạng thì chúng có các cặp cạnh tương ứng có cùng tỉ lệ.

- Tính chất đường phân giác.

Lời giải chi tiết

a) Vì \(BM\)là đường cao nên \(\widehat {AMB} = 90^\circ \); vì \(CN\)là đường cao nên \(\widehat {ANC} = 90^\circ \)

Xét tam giác \(AMB\) và tam giác \(ANC\) có:

\(\widehat A\) (chung)

\(\widehat {ANB} = \widehat {ANC} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta AMB\backsim\Delta ANC\) (g.g).

Suy ra, \(\frac{{AM}}{{AN}} = \frac{{AB}}{{AC}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).

Do đó, \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) (tỉ lệ thức)

Xét tam giác \(AMN\) và tam giác \(ABC\) có:

\(\widehat A\) (chung)

\(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) (chứng minh trên)

Suy ra, \(\Delta AMN\backsim\Delta ABC\) (c.g.c).

b) Xét tam giác \(AMN\) có \(AI\) là đường phân giác của \(\widehat {MAN}\left( {I \in MN} \right)\).

Theo tính chất đường phân giác ta có:

\(\frac{{IM}}{{IN}} = \frac{{AM}}{{AN}}\)

Xét tam giác \(ABC\) có \(AK\) là đường phân giác của \(\widehat {BAC}\left( {K \in BC} \right)\).

Theo tính chất đường phân giác ta có:

\(\frac{{BK}}{{KC}} = \frac{{AB}}{{AC}}\)

Mà \(\frac{{AM}}{{AN}} = \frac{{AB}}{{AC}}\) (chứng minh trên) nên \(\frac{{IM}}{{IN}} = \frac{{KB}}{{KC}}\) (điều phải chứng minh).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"