Đề bài
a) Rút gọn rồi tính giá trị biểu thức:
\(P = \left( {5{{\rm{x}}^2} - 2{\rm{x}}y + {y^2}} \right) - \left( {{x^2} + {y^2}} \right) - \left( {4{{\rm{x}}^2} - 5{\rm{x}}y + 1} \right)\) khi x = 1,2 và x + y = 6,2
b) Chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến a:
\(\left( {{x^2} - 5{\rm{x}} + 4} \right)\left( {2{\rm{x}} + 3} \right) - \left( {2{{\rm{x}}^2} - x - 10} \right)\left( {x - 3} \right)\)
Phương pháp giải - Xem chi tiết
a) Tìm giá trị y.
- Rút gọn biểu thức P rồi thay các giá trị x , y đã cho và tính được vào biểu thức P đã rút gọn.
b) Thực hiện theo quy tắc nhân đa thức với đa thức để rút gọn biểu thức không phụ thuộc vào biến x.
Lời giải chi tiết
a) Vì x = 1,2 và x + y = 6,2 nên \(y = 6,2 - x = 6,2 - 1,2 = 5\)
\(\begin{array}{l}P = \left( {5{{\rm{x}}^2} - 2{\rm{x}}y + {y^2}} \right) - \left( {{x^2} + {y^2}} \right) - \left( {4{{\rm{x}}^2} - 5{\rm{x}}y + 1} \right)\\P = 5{{\rm{x}}^2} - 2{\rm{x}}y + {y^2} - {x^2} - {y^2} - 4{{\rm{x}}^2} + 5{\rm{x}}y - 1\\P = \left( {5{{\rm{x}}^2} - {x^2} - 4{{\rm{x}}^2}} \right) + \left( {{y^2} - {y^2}} \right) + \left( { - 2{\rm{x}}y + 5{\rm{x}}y} \right)\\P = 3{\rm{x}}y - 1 \end{array}\)
Thay x = 1,2; y = 5 vào biểu thức P = 3xy - 1 ta được
\(P = 3.1,2.5 - 1 = 17\)
Vậy P = 17
b) Ta có:
\(\begin{array}{l}\left( {{x^2} - 5{\rm{x}} + 4} \right)\left( {2{\rm{x}} + 3} \right) - \left( {2{{\rm{x}}^2} - x - 10} \right)\left( {x - 3} \right)\\ = {x^2}.2{\rm{x}} + {x^2}.3 - 5{\rm{x}}.2{\rm{x}} - 5{\rm{x}}.3 + 4.2{\rm{x}} + 4.3 - {\rm{[2}}{{\rm{x}}^2}.x + 2{{\rm{x}}^2}.( - 3) - x.x - x.( - 3) - 10.x - 10.( - 3){\rm{]}}\\ = 2{{\rm{x}}^3} + 3{{\rm{x}}^2} - 10{{\rm{x}}^2} - 15{\rm{x}} + 8{\rm{x}} + 12 - 2{{\rm{x}}^3} + 6{\rm{x}}{}^2 + {x^2} - 3{\rm{x}} + 10{\rm{x}} - 30\\ = \left( {2{{\rm{x}}^3} - 2{{\rm{x}}^3}} \right) + \left( {3{{\rm{x}}^2} - 10{{\rm{x}}^2} + 6{{\rm{x}}^2} + {x^2}} \right) + ( - 15{\rm{x}} + 8{\rm{x}} - 3{\rm{x}} + 10{\rm{x}}) +(12-30)\\ = - 18\end{array}\)
Vậy biểu thức đã cho bằng -18 nên không phụ thuộc vào biến x