Giải mục 3 trang 13, 14 SGK Toán 8 tập 1 - Cánh diều

2024-09-14 08:29:39

HĐ 3

a) Tính tích: \(3{{\rm{x}}^2}.8{{\rm{x}}^4}\)

b) Nêu quy tắc nhân hai đơn thức cùng một biến

Phương pháp giải:

Ta nhân các hệ số với nhau và nhân các phần biến với nhau.

Lời giải chi tiết:

a) \(3{{\rm{x}}^2}.8{{\rm{x}}^4} = \left( {3.8} \right).\left( {{x^2}.{x^4}} \right) = 24{{\rm{x}}^6}\)

b) Quy tắc nhân hai đơn thức cùng một biến: ta nhân các hệ số với nhau và nhân các phần biến với nhau.


LT 3

Tính tích của hai đơn thức: \({x^3}{y^7}\) và \( - 2{{\rm{x}}^5}{y^3}\).

Phương pháp giải:

Thực hiện theo quy tắc nhân hai đơn thức có nhiều biến.

Lời giải chi tiết:

Ta có: \(\left( {{x^3}{y^7}} \right).\left( { - 2{{\rm{x}}^5}{y^3}} \right) = \left( { - 2} \right).\left( {{x^3}.{x^5}} \right).\left( {{y^7}.{y^3}} \right) =  - 2{{\rm{x}}^8}.{y^{10}}\)


HĐ 4

a) Tính tích: \(\left( {11{{\rm{x}}^3}} \right).\left( {{x^2} - x + 1} \right)\)

b) Nêu quy tắc nhân đơn thức với đa thức trong trường hợp một biến

Phương pháp giải:

Ta nhân đơn thức \(11{{\rm{x}}^3}\) với từng đơn thức của đa thức: \(\left( {{x^2} - x + 1} \right)\).

Lời giải chi tiết:

a) \(\left( {11{{\rm{x}}^3}} \right).\left( {{x^2} - x + 1} \right) = \left( {11{{\rm{x}}^3}} \right).\left( {{x^2}} \right) + \left( {11{{\rm{x}}^3}} \right).\left( { - x} \right) + \left( {11{{\rm{x}}^3}} \right).1 = 11{{\rm{x}}^5} - 11{{\rm{x}}^4} + 11{{\rm{x}}^3}\)

b) Quy tắc nhân đơn thức với đa thức trong trường hợp một biến: ta lấy đơn thức nhân với từng đơn thức của đa thức rồi cộng các kết quả với nhau.


LT 4

Tính tích: \(\left( { - \dfrac{1}{2}xy} \right).\left( {8{{\rm{x}}^2} - 5{\rm{x}}y + 2{y^2}} \right)\).

Phương pháp giải:

Thực hiện theo quy tắc nhân đơn thức với đa thức có nhiều biến.

Lời giải chi tiết:

a) Ta có: 

\(\begin{array}{l}\left( { - \frac{1}{2}xy} \right).\left( {8{x^2} - 5xy + 2{y^2}} \right)\\ = \left( { - \frac{1}{2}xy} \right).8{x^2} + \left( { - \frac{1}{2}xy} \right).\left( { - 5xy} \right) + \left( { - \frac{1}{2}xy} \right)\left( {2{y^2}} \right)\\ =  - 4{x^3}y + \frac{5}{2}{x^2}{y^2} - x{y^3}\end{array}\)

b) Quy tắc nhân hâi đa thức trong trường hợp một biến: ta lấy đơn thức của đa thức này nhân với từng đơn thức của đa thức kia rồi cộng các kết quả với nhau.


HĐ 5

a) Tính tích: \(\left( {x + 1} \right).\left( {{x^2} - x + 1} \right)\)

b) Nêu quy tắc nhân hai đa thức trong trường hợp một biến.

Phương pháp giải:

Ta nhân mỗi đơn thức của đa thức (x +1) với từng đơn thức của đa thức \(\left( {{x^2} - x + 1} \right)\).

Lời giải chi tiết:

a) Ta có:

\(\begin{array}{l}\left( {x + 1} \right).\left( {{x^2} - x + 1} \right)\\ = {x^3} - {x^2} + x + {x^2} - x + 1\\ = {x^3} + \left( {{x^2} - {x^2}} \right) + \left( {x - x} \right) + 1 = {x^3} + 1\end{array}\)

b) Quy tắc nhân hai đa thức trong trường hợp một biến: ta lấy đơn thức của đa thức này nhân với từng đơn thức của đa thức kia rồi cộng các kết quả với nhau.


LT 5

Tính: \({\left( {x - y} \right)}{\left( {x - y} \right)}\)

Phương pháp giải:

Thực hiện theo quy tắc nhân đa thức với đa thức trong trường hợp nhiều biến.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l} \left( {x - y} \right).\left( {x - y} \right)\\ = x.x - x.y - y.x + y.y\\ = {x^2} - xy - xy + {y^2} = {x^2} - 2{\rm{x}}y + {y^2}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"