Giải mục 1 trang 11, 12 SGK Toán 8 tập 1 - Cánh diều

2024-09-14 08:29:39

HĐ 1

Cho hai đa thức: \(P = {x^2} + 2{\rm{x}}y + {y^2}\) và \(Q = {x^2} - 2{\rm{x}}y + {y^2}\)

a) Viết tổng P + Q theo hàng ngang

b) Nhóm các đơn thức đồng dạng với nhau.

c) Tính tổng P + Q bằng cách thực hiện phép tính trong từng nhóm.

Phương pháp giải:

Nhóm các đơn thức đồng dạng rồi thực hiện phép tính.

Lời giải chi tiết:

a)

\(\begin{array}{l}P + Q = ({x^2} + 2{\rm{x}}y + {y^2}) + \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P + Q = {x^2} + 2{\rm{x}}y + {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\end{array}\)

b)

\(\begin{array}{l}P + Q = ({x^2} + 2{\rm{x}}y + {y^2}) + \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P + Q = {x^2} + 2{\rm{x}}y + {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\\P + Q = \left( {{x^2} + {x^2}} \right) + \left( {2{\rm{x}}y - 2{\rm{x}}y} \right) + \left( {{y^2} + {y^2}} \right)\end{array}\)

c)

\(\begin{array}{l}P + Q = ({x^2} + 2{\rm{x}}y + {y^2}) + \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P + Q = {x^2} + 2{\rm{x}}y + {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\\P + Q = \left( {{x^2} + {x^2}} \right) + \left( {2{\rm{x}}y - 2{\rm{x}}y} \right) + \left( {{y^2} + {y^2}} \right)\\P + Q = 2{{\rm{x}}^2} + 2{y^2}\end{array}\)


LT 1

Tính tổng hai đa thức: \(M = {x^3} + {y^3}\) và \(N = {x^3} - {y^3}\)

Phương pháp giải:

Nhóm các đơn thức đồng dạng rồi thực hiện phép tính.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}M + N = ({x^3} + {y^3}) + ({x^3} - {y^3})\\M + N = {x^3} + {y^3} + {x^3} - {y^3}\\M + N = \left( {{x^3} + {x^3}} \right) + \left( {{y^3} - {y^3}} \right) = 2{{\rm{x}}^3}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"