Giải bài 4 trang 37 SGK Toán 8 tập 1 - Cánh diều

2024-09-14 08:29:49

Đề bài

Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:

\(a)\dfrac{2}{{x - 3y}}\) và \(\dfrac{3}{{x + 3y}}\)

\(b)\dfrac{7}{{4{\rm{x}} + 24}}\) và \(\dfrac{{13}}{{{x^2} - 36}}\)

Phương pháp giải - Xem chi tiết

Bước 1: Phân tích mẫu của mỗi phân thức rồi tìm MTC.

Bước 2: Tìm nhân tử phụ của mỗi phân thức (Bằng cách chia MTC cho từng mẫu)

Bước 3: Nhân cả tử và mẫu của mỗi phân thức đã cho với nhân tử phụ tương ứng.

Lời giải chi tiết

a) Chọn MTC là: \(\left( {x - 3y} \right)\left( {x + 3y} \right)\)

Nhân tử phụ của các mẫu thức \(\dfrac{2}{{x - 3y}}\) và \(\dfrac{3}{{x + 3y}}\) lần lượt là: \(\left( {x + 3y} \right);\left( {x - 3y} \right)\)

Vậy:
 \(\dfrac{2}{{x - 3y}} = \dfrac{{2\left( {x + 3y} \right)}}{{\left( {x - 3y} \right)\left( {x + 3y} \right)}}\)

\(\dfrac{3}{{x + 3y}} = \dfrac{{3.\left( {x - 3y} \right)}}{{\left( {x + 3y} \right)\left( {x - 3y} \right)}}\)

b) Ta có: \(\begin{array}{l}4{\rm{x}} + 24 = 4\left( {x + 6} \right)\\{x^2} - 36 = \left( {x - 6} \right)\left( {x + 6} \right)\end{array}\)

Chọn MTC là: \(4\left( {x + 6} \right)\left( {x - 6} \right)\)

Nhân tử phụ của các phân thức \(\dfrac{7}{{4{\rm{x}} + 24}}\) và \(\dfrac{{13}}{{{x^2} - 36}}\) lần lượt là \(\left( {x - 6} \right);4\)

Vậy:

\(\dfrac{7}{{4{\rm{x}} + 24}} = \dfrac{7}{{4\left( {x + 6} \right)}} = \dfrac{{7\left( {x - 6} \right)}}{{4\left( {x + 6} \right)\left( {x - 6} \right)}}\)

\(\dfrac{{13}}{{{x^2} - 36}} = \dfrac{{13}}{{\left( {x + 6} \right)\left( {x - 6} \right)}} = \dfrac{{13.4}}{{4\left( {x + 6} \right)\left( {x - 6} \right)}} = \dfrac{{52}}{{4\left( {x + 6} \right)\left( {x - 6} \right)}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"