Giải mục 1 trang 38, 39 SGK Toán 8 tập 1 - Cánh diều

2024-09-14 08:29:55

HĐ1

Thực hiện phép tính: \(\dfrac{{ - 3}}{5} + \dfrac{{23}}{5}\)

Phương pháp giải:

Áp dụng quy tắc cộng  hai phân số cùng mẫu.

Lời giải chi tiết:

Ta có: \(\dfrac{{ - 3}}{5} + \dfrac{{23}}{5} = \dfrac{{\left( { - 3} \right) + 23}}{5} = \dfrac{{20}}{5} = 4\)


LT1

Thực hiện phép tính: \(\dfrac{{x - 2y}}{{{x^2} + xy}} + \dfrac{{x + 2y}}{{{x^2} + xy}}\)

Phương pháp giải:

Thực hiện theo quy tắc cộng hai phân thức cùng mẫu: cộng tử với tử và giữ nguyên mẫu.

Lời giải chi tiết:

Ta có: \(\dfrac{{x - 2y}}{{{x^2} + xy}} + \dfrac{{x + 2y}}{{{x^2} + xy}} = \dfrac{{x - 2y + x + 2y}}{{{x^2} + xy}} = \dfrac{{2{\rm{x}}}}{{{x^2} + xy}}\)


HĐ2

Cho hai phân thức: \(\dfrac{1}{{x + 1}};\dfrac{1}{{x - 1}}\)

a) Quy đồng mẫu thức hai phân thức trên

b) Từ câu a, hãy thực hiện phép tính: \(\dfrac{1}{{x + 1}} + \dfrac{1}{{x - 1}}\)

Phương pháp giải:

Tìm mẫu thức chung rồi quy đồng mẫu.

Lời giải chi tiết:

a) Chọn MTC là: \(\left( {x - 1} \right)\left( {x + 1} \right)\)

Nhân tử phụ đối với hai phân thức: \(\dfrac{1}{{x + 1}};\dfrac{1}{{x - 1}}\) lần lượt là: \(\left( {x - 1} \right);\left( {x + 1} \right)\)

Ta có:

\(\begin{array}{l}\dfrac{1}{{x + 1}} = \dfrac{{x - 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\\dfrac{1}{{x - 1}} = \dfrac{{x + 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\end{array}\)

b) Ta có:

\(\dfrac{1}{{x + 1}} + \dfrac{1}{{x - 1}} = \dfrac{{x - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} + \dfrac{{x + 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \dfrac{{x - 1 + x + 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \dfrac{{2{\rm{x}}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\)


LT2

Thực hiện phép tính: \(\dfrac{1}{{{x^2} + xy}} + \dfrac{1}{{xy + {y^2}}}\)

Phương pháp giải:

Ta quy đồng mẫu thức rồi cộng các phân thức cón cùng mẫu thức vừa tìm được.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\dfrac{1}{{{x^2} + xy}} + \dfrac{1}{{xy + {y^2}}}\\ = \dfrac{1}{{x\left( {x + y} \right)}} + \dfrac{1}{{y\left( {x + y} \right)}}\\ = \dfrac{y}{{xy\left( {x + y} \right)}} + \dfrac{x}{{xy\left( {x + y} \right)}}\\ = \dfrac{{x + y}}{{xy\left( {x + y} \right)}} = \dfrac{1}{{xy}}\end{array}\)


HĐ3

Hãy nêu các tính chất của phép cộng phân số.

Phương pháp giải:

Tính chất của phân số có các tính chất sau: giao hoán, kết hợp, cộng với số 0.

Lời giải chi tiết:

Giả sử các phân số \(\dfrac{a}{b};\dfrac{c}{d};\dfrac{e}{f}\) đều có nghĩa.

Tính chất giao hoán: \(\dfrac{a}{b} + \dfrac{c}{d} = \dfrac{c}{d} + \dfrac{a}{b}\)

Tính chất kết hợp: \(\left( {\dfrac{a}{b} + \dfrac{c}{d}} \right) + \dfrac{e}{f} = \dfrac{a}{b} + \left( {\dfrac{c}{d} + \dfrac{e}{f}} \right)\)

Tính chất cộng với số 0: \(\dfrac{a}{b} + 0 = 0 + \dfrac{a}{b} = \dfrac{a}{b}\)


LT3

Tính một cách hợp lí:

\(\dfrac{{{x^2} + {y^2} - 1}}{{{x^2} + 2{\rm{x}}y + {y^2}}} + \dfrac{{2y}}{{x + y}} + \dfrac{{1 - 2{y^2}}}{{{x^2} + 2{\rm{x}}y + {y^2}}}\)

Phương pháp giải:

Áp dụng tính chất giao hoán của phân thức để tính hợp lí.

Lời giải chi tiết:

\(\begin{array}{l}\dfrac{{{x^2} + {y^2} - 1}}{{{x^2} + 2{\rm{x}}y + {y^2}}} + \dfrac{{2y}}{{x + y}} + \dfrac{{1 - 2{y^2}}}{{{x^2} + 2{\rm{x}}y + {y^2}}}\\ = \dfrac{{{x^2} + {y^2} - 1}}{{{x^2} + 2{\rm{x}}y + {y^2}}} + \dfrac{{1 - 2{y^2}}}{{{x^2} + 2{\rm{x}}y + {y^2}}} + \dfrac{{2y}}{{x + y}}\\ = \dfrac{{{x^2} + {y^2} - 1 + 1 - 2{y^2}}}{{{x^2} + 2{\rm{x}}y + {y^2}}} + \dfrac{{2y}}{{x + y}}\\ = \dfrac{{{x^2} - {y^2}}}{{{{\left( {x + y} \right)}^2}}} + \dfrac{{2y}}{{x + y}} = \dfrac{{\left( {x - y} \right)\left( {x + y} \right)}}{{{{\left( {x + y} \right)}^2}}} + \dfrac{{2y}}{{x + y}} = \dfrac{{x - y}}{{x + y}} + \dfrac{{2y}}{{x + y}} = \dfrac{{x + y}}{{x + y}} = 1\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"