HĐ1
Nêu quy tắc nhân hai phân số.
Phương pháp giải:
Áp dụng quy tắc nhân hai phân số.
Lời giải chi tiết:
Để nhân hai phân số, ta nhân tử với tử và nhân các mẫu với nhau.
LT1
Thực hiện phép tính:
\(a)\dfrac{{{x^3} + 1}}{{{x^2} - 2{\rm{x}} + 1}}.\dfrac{{x - 1}}{{{x^2} - x + 1}}\)
\(b)\left( {{x^2} - 4{\rm{x}} + 4} \right).\dfrac{2}{{3{{\rm{x}}^2} - 6{\rm{x}}}}\)
Phương pháp giải:
Áp dụng quy tắc nhân hai phân thức đại số và rút gọn tích.
Lời giải chi tiết:
\(\begin{array}{l}a)\dfrac{{{x^3} + 1}}{{{x^2} - 2{\rm{x}} + 1}}.\dfrac{{x - 1}}{{{x^2} - x + 1}} = \\ = \dfrac{{\left( {{x^3} + 1} \right)\left( {x - 1} \right)}}{{\left( {{x^2} - 2{\rm{x}} + 1} \right).\left( {{x^2} - x + 1} \right)}}\\ = \dfrac{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}.\left( {{x^2} - x + 1} \right)}} = \dfrac{{x + 1}}{{x - 1}}\end{array}\)
\(\begin{array}{l}b)\left( {{x^2} - 4{\rm{x}} + 4} \right).\dfrac{2}{{3{{\rm{x}}^2} - 6{\rm{x}}}}\\ = \dfrac{{\left( {{x^2} - 4{\rm{x}} + 4} \right).2}}{{3{{\rm{x}}^2} - 6{\rm{x}}}} = \dfrac{{{{\left( {x - 2} \right)}^2}.2}}{{3{\rm{x}}\left( {x - 2} \right)}} = \dfrac{{2\left( {x - 2} \right)}}{{3{\rm{x}}}}\end{array}\)
HĐ2
Hãy nêu các tính chất của phép nhân phân số.
Phương pháp giải:
Các tính chất của phân số là: giao hoán, kết hợp, phân phối phép nhân đối với phép cộng.
Lời giải chi tiết:
* Tính chất giao hoán: \(\dfrac{a}{b}.\dfrac{c}{d} = \dfrac{c}{d}.\dfrac{a}{b}\)
* Tính chất kết hợp: \(\left( {\dfrac{a}{b}.\dfrac{c}{d}} \right).\dfrac{e}{f} = \dfrac{a}{b}.\left( {\dfrac{c}{d}.\dfrac{e}{f}} \right)\)
* Tính chất của pép nhân phân phối với phép cộng:
\(\dfrac{a}{b}.\left( {\dfrac{c}{d} + \dfrac{e}{f}} \right) = \dfrac{a}{b}.\dfrac{c}{d} + \dfrac{a}{b}.\dfrac{e}{f}\)
(\(\dfrac{a}{b};\dfrac{c}{d};\dfrac{e}{f}\) là các phân số có nghĩa)
LT2
Thực hiện phép tính:
\(a)\dfrac{{y + 6}}{{{x^2} - 4{\rm{x}} + 4}}.\dfrac{{{x^2} - 4}}{{x + 1}}.\dfrac{{x - 2}}{{y + 6}}\)
\(b) \left(\frac{2x+1}{{x - 3}} + \frac{2x+1}{x+3}\right ) .\dfrac{{x^2 - 9}}{{2{\rm{x}} + 1}}\)
Phương pháp giải:
Vận dụng các tính chất của phép nhân phân thức đại số để tính toán hợp lí.
Lời giải chi tiết:
\(\begin{array}{l}a)\dfrac{{y + 6}}{{{x^2} - 4{\rm{x}} + 4}}.\dfrac{{{x^2} - 4}}{{x + 1}}.\dfrac{{x - 2}}{{y + 6}}\\ = \dfrac{{y + 6}}{{{x^2} - 4{\rm{x}} + 4}}.\dfrac{{x - 2}}{{y + 6}}.\dfrac{{{x^2} - 4}}{{x + 1}}\\ = \dfrac{{\left( {y + 6} \right).\left( {x - 2} \right).\left( {{x^2} - 4} \right)}}{{\left( {{x^2} - 4{\rm{x}} + 4} \right).\left( {y + 6} \right).\left( {x + 1} \right)}}\\ = \dfrac{{\left( {y + 6} \right).\left( {x - 2} \right).\left( {x - 2} \right)\left( {x + 2} \right)}}{{{{\left( {x - 2} \right)}^2}.\left( {y + 6} \right).\left( {x + 1} \right)}} = \dfrac{{x + 2}}{{x + 1}}\end{array}\)
\(\begin{array}{l}b)\left(\frac{2x+1}{{x - 3}} + \frac{2x+1}{x+3}\right ) .\dfrac{{x^2 - 9}}{{2{\rm{x}} + 1}} \\ = (2x+1) \left ( \frac {1}{x-3} + \frac {1}{x+3} \right ) . \frac {(x-3)(x+3)}{2x + 1} \\ = (2x+1) \frac {x+3 + x - 3}{(x-3)(x+3)} . \frac {(x-3)(x+3)}{2x + 1} \\ = \frac {2x(2x+1)}{(x-3)(x+3)} . \frac {(x-3)(x+3)}{2x +1} \\= 2x \end{array}\)