Đề bài
Vẽ đồ thị các hàm số \(y = 3{\rm{x}};y = 3{\rm{x}} + 4;y = - \dfrac{1}{2}x;y = - \dfrac{1}{2}x + 3\) trên cùng một mặt phẳng tọa độ.
Phương pháp giải - Xem chi tiết
Xác định hai điểm thuộc đồ thị hàm số đã cho. Vẽ đường thẳng đi qua hai điểm ta được đồ thị hàm số.
Lời giải chi tiết
* y = 3x
Với x = 1 thì y = 3, ta được điểm A(1; 3) thuộc đồ thị hàm số y = 3x
Vậy đồ thị hàm số y = 3x là đường thẳng đi qua hai điểm O(0; 0) và A(1; 3)
* y = 3x + 4
Với x = 0 thì y = 4, ta được điểm B(0; 4) thuộc đồ thị hàm số y = 3x + 4
Với x = -1 thì y = 1, ta được điểm C(-1; 1) thuộc đồ thị hàm số y = 3x + 4
Vậy đồ thị hàm số y = 3x + 4 là đường thẳng đi qua hai điểm B(0; 4) và C(-1; 1)
* \(y = - \dfrac{1}{2}x\)
Với x = 2 thì y = -1, ta được điểm D(2; -1) thuộc đồ thị hàm số \(y = - \dfrac{1}{2}x\)
Vậy đồ thị hàm số \(y = - \dfrac{1}{2}x\) là đường thẳng đi qua hai điểm O(0; 0) và điểm D(2; -1)
* \(y = - \dfrac{1}{2}x + 3\)
Với x = 0 thì y = 3, ta được điểm E(0; 3) thuộc đồ thị hàm số \(y = - \dfrac{1}{2}x + 3\)
Với y = 0 thì x = 6 ta được điểm H(6; 0) thuộc đồ thị hàm số \(y = - \dfrac{1}{2}x + 3\)
Vậy đồ thị hàm số \(y = - \dfrac{1}{2}x + 3\) là đường thẳng đi qua hai điểm E(0; 3) và H(6; 0)