Giải bài 3 trang 108 SGK Toán 8 tập 1 - Cánh diều

2024-09-14 08:31:09

Đề bài

Cho hai hình bình hành ABCD và ABMN (Hình 42). Chứng minh:

a) CD = MN

b) \(\widehat {BC{\rm{D}}} + \widehat {BMN} = \widehat {DAN}\)

Phương pháp giải - Xem chi tiết

Vận dụng tính chất của hình bình hành

+ Các cạnh đối bằng nhau

+ Các góc đối bằng nhau

+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường

Lời giải chi tiết

a, Do ABCD là hình bình hành: AB = CD.

Do ABMN là hình bình hành: AB = MN

Suy ra: CD = MN = AB

b, Do ABCD là hình bình hành \( \Rightarrow \widehat {BCD} = \widehat {DAB}\)

Do ABMN là hình bình hành \( \Rightarrow \widehat {BMN} = \widehat {NAB}\)

\(\widehat {BCD} + \widehat {BMN} = \widehat {DAB} + \widehat {NAB} = \widehat {DAN}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"