Giải mục 3 trang 106, 107 SGK Toán 8 tập 1 - Cánh diều

2024-09-14 08:31:11

HĐ3

a) Cho tứ giác ABCD có AB = CD, BC = DA (hình 39)

- Hai tam giác ABC và CDA có bằng nhau hay không?

Từ đó, hãy so sánh các cặp góc: \(\widehat {BAC}\) và \(\widehat {DCA};\widehat {ACB}\) và \(\widehat {CAD}\).

ABCD có phải là hình bình hành hay không?

b) Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường (Hình 40)

Hai tam giác ABO và CDO có bằng nhau hay không? Từ đó, hãy so sánh các cặp góc: \(\widehat {BAC}\) và \(\widehat {DCA};\widehat {ACB}\) và \(\widehat {CA{\rm{D}}}\).

ABCD có phải là hình bình hành hay không?

Phương pháp giải:

Chứng minh các tam giác bằng nhau từ đo suy ra các cạnh và các góc tương ứng bằng nhau.

Lời giải chi tiết:

a) Xét hai tam giác ABC và CDA có:AB = CD; AD = BC; AC chung nên \(\Delta ABC = \Delta C{\rm{D}}A(c - c - c)\)

Suy ra: \(\widehat {BAC}\) = \(\widehat {DCA};\widehat {ACB}\) = \(\widehat {CAD}\).

Nên ABCD hình bình hành.

b) Xét hai tam giác ABO và tam giác  CDO có: \(OA = OB;\widehat {AOB} = \widehat {CO{\rm{D}}};OC = O{\rm{D}}\)

Suy ra: \(\Delta ABO = \Delta C{\rm{D}}O\)

Suy ra: \(\widehat {BAC}\) = \(\widehat {DCA};\widehat {ACB}\) = \(\widehat {CA{\rm{D}}}\).

Nên ABCD là hình bình hành.


LT2

Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O thỏa mãn: OA = OC và \(\widehat {OA{\rm{D}}} = \widehat {OCB}\). Chứng minh tứ giác ABCD là hình bình hành.

Phương pháp giải:

Chứng minh tứ giác ABCD có: OA = OC; OB = OD

Lời giải chi tiết:

Xét tam giác AOD và tam giác COB có:

\(\begin{array}{l}OA = OC\\\widehat {DAO} = \widehat {BCO}(gt)\\\widehat {AO{\rm{D}}} = \widehat {BOC}(gt)\\ \Rightarrow \Delta AO{\rm{D}} = \Delta COB\\ \Rightarrow O{\rm{D}} = OB\end{array}\)

Tứ giác ABCD có OA = OC; OB = OD nên tứ giác ABCD là hình bình hành.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"