Giải bài 2 trang 111 SGK Toán 8 tập 1 - Cánh diều

2024-09-14 08:31:18

Đề bài

Cho tam giác ABC vuông tại A có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh tứ giác ABCD là hình chữ nhật và \(AM = \dfrac{1}{2}BC\).

Phương pháp giải - Xem chi tiết

Chứng minh ABCD là hình bình hành có hai đường chéo bằng nhau.

Lời giải chi tiết

Xét tứ giác ABCD có:

MB = MC (M là trung điểm của BC)

MA = MD (gt)

Suy ra tứ giác ABPC là hình bình hành (có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

Mà hình bình hành ABDC có \(\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over A}  = {90^0}\)nên ABCD là hình chữ nhật

Vì: ABDC là hình chữ nhật nên BC = AD

Mà: \(AM = \dfrac{1}{2}AC = \dfrac{1}{2}BC\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"