Đề bài
Một viên gạch trang trí có dạng hình thoi với độ dài cạnh là 40 cm và số đo một góc là \({60^o}\) (Hình 63).
Diện tích của viên gạch đó là bao nhiêu centimét vuông (làm tròn kết quả đến hàng phần trăm).
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của hình thoi
+ Hai đường chéo vuông góc với nhau.
+ Hai đường chéo là các đường phân giác của các góc trong hình thoi.
Lời giải chi tiết
Giả sử viên gạch dạng hình thoi là hình thoi ABCD có.
AB = 40 cm; O là giao điểm của AC và BD
Xét \(\Delta DAB\) có: AB = AD = 40 cm; \( \Rightarrow \Delta DAB\) là tam giác đều suy ra
BD = AB = AD = 40cm \( \Rightarrow OB = \dfrac{{BD}}{2} = \dfrac{{40}}{2} = 20cm\)
Xét \(\Delta AOB\) vuông tại O có: \(O{A^2} + O{B^2} = A{B^2} \Rightarrow O{A^2} = A{B^2} - O{B^2} = {40^2} - {20^2} = 1200\)
\( \Rightarrow OA = \sqrt {1200} \Rightarrow AC = 2\sqrt {1200} \)
Diện tích của hình thoi ABCD là: \(S = \dfrac{1}{2}.AC.BD = \dfrac{1}{2}.40.2\sqrt {1200} = 1385,64(c{m^2})\)
Vậy diện tích của viên gạch đó là: \(1385,64(c{m^2})\)