Giải bài 2 trang 115 SGK Toán 8 tập 1 - Cánh diều

2024-09-14 08:31:26

Đề bài

Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh:

\(A{C^2} + B{{\rm{D}}^2} = 4\left( {O{A^2} + O{B^2}} \right) = 4{\rm{A}}{B^2}\)

Phương pháp giải - Xem chi tiết

Áp dụng định lí Pythagore trong các tam giác vuông để chứng minh.

 

Lời giải chi tiết

Xét \(\Delta OAB\)vuông tại A có: \(O{A^2} + O{B^2} = A{B^2}\)

Vì ABCD là hình thoi nên OA = OC; OB = OP

Ta có: \(\begin{array}{l}A{C^2} + B{D^2} = {(OA + OC)^2} + {(OB + OD)^2}\\ = {(OA + OA)^2} + {(OB + OB)^2}\\ = {(2OA)^2} + {(2OB)^2} = 4.O{A^2} + 4.O{B^2} = 4{(OA + OB)^2} = 4.A{B^2}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"