Giải bài 11 trang 121 SGK Toán 8 tập 1 - Cánh diều

2024-09-14 08:31:40

Đề bài

Cho bình bình hành ABCD. Gọi M là điểm nằm giữa A và B, N là điểm nằm giữa C và D sao cho    AM = CN. Gọi I là giao điểm của MN và AC. Chứng minh:

a) \(\Delta IAM = \Delta ICN\)

b) Tứ giác AMCN là hình bình hành.

c) Ba điểm B, I, D thẳng hàng.

Phương pháp giải - Xem chi tiết

a) Chứng minh \(\Delta IAM = \Delta ICN\)(g-c-g)

b) Chứng minh tứ giác AMCN có các cặp cạnh đối bằng nhau.

c) Chứng minh I là trung điểm của BD.

Lời giải chi tiết

a) Xét tam giác IAM ta có: \(\widehat {AMI} + \widehat {MIA} + \widehat {MAI} = {180^o}\)

Xét tam giác ICN có: \(\widehat {CNI} + \widehat {NIC} + \widehat {NCI} = {180^o}\)

Vì: \(\widehat {MIA} = \widehat {NIC}\) (đối đỉnh)

\(\widehat {MAI} = \widehat {NCI}\) (fo AB // CD)

Suy ra: \(\widehat {AMI} = \widehat {CNI}\)

Xét tam giác IAM  và tam giác ICN có:

\(\widehat {AMI} = \widehat {CNI}\)

AM = CN

\(\widehat {MIA} = \widehat {NIC}\)

\( \Rightarrow \Delta IAM = \Delta ICN(g - c - g)\)

b) Vì \(\Delta IAM = \Delta ICN \Rightarrow MC = AN\)

Xét tứ giác AMCN có: MC = AN; AM = CN

Suy ra tứ giác AMCN là hình bình hành.

c) Vì tứ giác AMCN là hình bình hành

Suy ra I là trung điểm của AC

Suy ra I là trung điểm của BD (vì ABCD là hình bình hành)

Suy ra ba điểm B, I, D thẳng hàng.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"