Giải bài 1 trang 69 SGK Toán 8 – Cánh diều

2024-09-14 08:32:45

Đề bài

Cho tam giác ABC có ba đường phân giácAD, BE, CF. Biết \(AB = 4,\,\,BC = 5,\,\,CA = 6\). Tính BD, CE, AF.

Phương pháp giải - Xem chi tiết

Dựa vào tính chất đường phân giác để tính độ dài các cạnh.

Lời giải chi tiết

Có AD là đường phân giác trong tam giác ABC nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}} \Rightarrow \frac{{DB}}{{DC}} = \frac{4}{6} = \frac{2}{3} \Rightarrow DC = \frac{3}{2}DB\)

Mà \(DB + DC = BD \Rightarrow DB + \frac{3}{2}DB = 5 \Rightarrow DB = 2\)

Có BE là đường phân giác trong tam giác ABC nên \(\frac{{AE}}{{EC}} = \frac{{AB}}{{CB}} \Rightarrow \frac{{AE}}{{EC}} = \frac{4}{5} \Rightarrow AE = \frac{4}{5}CE\)

Mà \(AE + EC = AC \Rightarrow \frac{4}{5}CE + CE = 6 \Rightarrow CE = \frac{{10}}{3}\)

Có CF là đường phân giác trong tam giác ABC nên \(\frac{{AF}}{{FB}} = \frac{{CA}}{{CB}} \Rightarrow \frac{{AF}}{{FB}} = \frac{6}{5} \Rightarrow FB = \frac{6}{5}AF\)

Mà \(AF + FB = AB \Rightarrow AF + \frac{5}{6}AF = 4 \Rightarrow AF = \frac{{24}}{{11}}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"