Giải bài 6 trang 78 SGK Toán 8 – Cánh diều

2024-09-14 08:32:55

Đề bài

Cho các hình bình hành ABCD và BMNP như ở Hình 67. Chứng minh:

a) \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}}\)

b)  \( \Delta{MNP} \backsim \Delta{CBA}\)

Phương pháp giải - Xem chi tiết

a) Dựa vào định lí Thales suy ra được các tỉ số bằng nhau.

b) Chứng minh MP // AC, suy ra các tỉ số bằng nhau của tam giác PBM và tam giác CBA

BMNP là hình bình hành suy ra các tỉ số bằng nhau của tam giác PBM và tam giác CBA

Từ đó ta suy ra điều phải chứng minh.

Lời giải chi tiết

a) Vì ABCD và BMNP là hình bình hành nên \(MN//BP\) và \(AD//BC \Rightarrow MN//AD\)

Xét tam giác ABD có \(AD//MN \Rightarrow \frac{{BM}}{{BA}} = \frac{{BN}}{{BD}}\) (1) (Định lý Thales)

Tương tự ta chứng minh được \(NP//DC \Rightarrow \frac{{BN}}{{BD}} = \frac{{BP}}{{BC}}\)(2)

Từ (1) và (2) ta có \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}}\).

b) Ta có \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}} \Rightarrow MP//AC\)(Định lý Thales đảo)

\( \Rightarrow \Delta PBM \backsim\Delta CBA\) (c-c-c) (3)

Vì BMNP là hình bình hành nên ta có \(\frac{{PB}}{{MN}} = \frac{{BM}}{{NP}} = \frac{{MP}}{{PM}} = 1\)

\( \Rightarrow \Delta PBM \backsim\Delta MNP\) (c-c-c) (4)

Từ (3) và (4) ta có \(\Delta MNP \backsim\Delta CBA\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"