Đề bài
Cho \(\Delta DEG \backsim \Delta MNP,\,\,\widehat E = 60^\circ ,\,\,\widehat M = 40^\circ \).
a) Số đo góc D bằng bao nhiêu độ?
A. \(40^\circ \)
B. \(50^\circ \)
C. \(60^\circ \)
D. \(80^\circ \)
b) Số đo góc N bằng bao nhiêu độ?
A. \(40^\circ \)
B. \(50^\circ \)
C. \(60^\circ \)
D. \(80^\circ \)
b) Số đo góc P bằng bao nhiêu độ?
A. \(40^\circ \)
B. \(50^\circ \)
C. \(60^\circ \)
D. \(80^\circ \)
Phương pháp giải - Xem chi tiết
Từ hai tam giác đồng dạng suy ra các cặp góc bằng nhau rồi tính các góc còn lại trong mỗi tam giác.
Lời giải chi tiết
a) Vì \(\Delta DEG \backsim \Delta MNP\) nên \(\widehat D = \widehat M,\,\,\widehat E = \widehat N,\,\,\widehat G = \widehat P\)
\( \Rightarrow \widehat D = \widehat M = 40^\circ \)
\( \to \) Chọn đáp án A.
b) Theo câu a) ta có \(\widehat E = \widehat N = 60^\circ \)
\( \to \) Chọn đáp án C.
c) Xét tam giác MNP có:
\(\begin{array}{l}\widehat M + \widehat N + \widehat P = 180^\circ \\ \Rightarrow 40^\circ + 60^\circ + \widehat P = 180^\circ \\ \Rightarrow \widehat P = 80^\circ \end{array}\)
\( \to \) Chọn đáp án D.