Đề bài
Cho hai đa thức \(P = {x^3}{y^4} - 4{x^2}{y^2} - 4x + 6\)vvà \(Q = 5{x^2}{y^2} - 3{x^3}{y^4} + x - 1\). Tính \(P + Q\) và \(P - Q\).
Phương pháp giải - Xem chi tiết
Viết biểu thức \(P + Q\) và \(P - Q\), bỏ ngoặc
Sắp xếp các đơn thức đồng dạng về cùng một nhóm
Cộng, trừ các đơn thức đồng dạng trong mỗi nhóm.
Lời giải chi tiết
Ta có: \(P + Q = \left( {{x^3}{y^4} - 4{x^2}{y^2} - 4x + 6} \right) + \left( {5{x^2}{y^2} - 3{x^3}{y^4} + x - 1} \right)\)
\(\begin{array}{l} = {x^3}{y^4} - 4{x^2}{y^2} - 4x + 6 + 5{x^2}{y^2} - 3{x^3}{y^4} + x - 1\\ = \left( {{x^3}{y^4} - 3{x^3}{y^4}} \right) + \left( { - 4{x^2}{y^2} + 5{x^2}{y^2}} \right) + \left( { - 4x + x} \right) + \left( {6 - 1} \right)\\ = - 2{x^3}{y^4} + {x^2}{y^2} - 3x + 5\end{array}\)
\(P - Q = \left( {{x^3}{y^4} - 4{x^2}{y^2} - 4x + 6} \right) - \left( {5{x^2}{y^2} - 3{x^3}{y^4} + x - 1} \right)\)
\(\begin{array}{l} = {x^3}{y^4} - 4{x^2}{y^2} - 4x + 6 - 5{x^2}{y^2} + 3{x^3}{y^4} - x + 1\\ = \left( {{x^3}{y^4} + 3{x^3}{y^4}} \right) + \left( { - 4{x^2}{y^2} - 5{x^2}{y^2}} \right) + \left( { - 4x - x} \right) + \left( {6 + 1} \right)\\ = 4{x^3}{y^4} - 9{x^2}{y^2} - 5x + 7\end{array}\)