Giải bài 1.34 trang 25 SGK Toán 8 - Cùng khám phá

2024-09-14 08:33:53

Đề bài

a) Viết biểu thức \({x^3} + 3{x^2} + 3x + 1\) dưới dạng lập phương của một tổng.

b) Sử dụng kết quả của câu a, hãy tính  giá trị của biểu thức sau tại \(x = 19:\)

\({x^3} + 3{x^2} + 3x + 1.\)

Phương pháp giải - Xem chi tiết

Sử dụng hằng đẳng thức \({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\).

Lời giải chi tiết

a) Ta có \({x^3} + 3{x^2} + 3x + 1 = {\left( {x + 1} \right)^3}.\)

b) Thay \(x = 19\) vào biểu thức ta có \({\left( {19 + 1} \right)^3} = {20^3} = 8000.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"