Giải bài 1.50 trang 30 SGK Toán 8 - Cùng khám phá

2024-09-14 08:34:02

Đề bài

Cho hai đa thức \(A = {x^2} - xy + 2{y^2}\) và \(B = 2{x^2} + xy + {y^2}\)

a)     Tìm đa thức C sao cho \(C = A + B\)

b)    Tìm đa thức D sao cho \(D = A - B\)

c)     Tìm đa thức E sao cho \(E = A.B\).

Phương pháp giải - Xem chi tiết

Áp dụng các phương pháp cộng, trừ, nhân đa thức để tìm được các đa thức C, D, E.

Lời giải chi tiết

a)

\(\begin{array}{l}C = A + B\\C = \left( {{x^2} - xy + 2{y^2}} \right) + \left( {2{x^2} + xy + {y^2}} \right)\\C = \left( {{x^2} + 2{x^2}} \right) + \left( { - xy + xy} \right) + \left( {2{y^2} + {y^2}} \right)\\C = 3{x^2} + 3{y^2}\end{array}\)

b)

\(\begin{array}{l}D = A - B\\D = \left( {{x^2} - xy + 2{y^2}} \right) - \left( {2{x^2} + xy + {y^2}} \right)\\D = \left( {{x^2} - 2{x^2}} \right) + \left( { - xy - xy} \right) + \left( {2{y^2} - {y^2}} \right)\\D =  - {x^2} - 2xy + {y^2}\end{array}\)

c)

\(\begin{array}{l}E = A.B\\E = \left( {{x^2} - xy + 2{y^2}} \right).\left( {2{x^2} + xy + {y^2}} \right)\\E = {x^2}.\left( {2{x^2} + xy + {y^2}} \right) - xy.\left( {2{x^2} + xy + {y^2}} \right) + 2{y^2}.\left( {2{x^2} + xy + {y^2}} \right)\\E = 2{x^4} + {x^3}y + {x^2}{y^2} - 2{x^3}y - {x^2}{y^2} - x{y^3} + 4{x^2}{y^2} + 2x{y^3} + 2{y^4}\\E = 2{x^4} + \left( {{x^3}y - 2{x^3}y} \right) + \left( {{x^2}{y^2} - {x^2}{y^2} + 4{x^2}{y^2}} \right) - x{y^3} + 2x{y^3} + 2{y^4}\\E = 2{x^4} - {x^3}y + 4{x^2}{y^2} - x{y^3} + 2x{y^3} + 2{y^4}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"