Giải mục 1 trang 39, 40 SGK Toán 8 - Cùng khám phá

2024-09-14 08:34:12

Hoạt động 1

Cho hai phân thức \(\frac{1}{x}\) và \(\frac{1}{{x + 1}}\).

a) Tìm đa thức thích hợp cho mỗi ô ?

\(\frac{1}{x} = \frac{?}{{x\left( {x + 1} \right)}};\)

\(\frac{1}{{x + 1}} = \frac{?}{{x\left( {x + 1} \right)}}.\)

b) Em có nhận xét gì về mẫu thức ở vế phải của hai đẳng thức trong câu a?

Phương pháp giải:

a) Ta nhân cả tử và mẫu của phân thức này với mẫu của phân thức kia.

b) Dựa vào bài làm ý a.

Lời giải chi tiết:

a) Ta có \(\frac{1}{x} = \frac{{\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}}\)

\(\frac{1}{{x + 1}} = \frac{x}{{x\left( {x + 1} \right)}}.\)

b) Mẫu thức ở vế phải của hai đẳng thức trong câu a đều bằng \(x\left( {x + 1} \right)\)và chính là tích mẫu thức ở vế phải của hai đẳng thức.


Luyện tập 1

Tìm một mẫu thức chung của hai phân thức \(\frac{{2x + 3}}{{27{x^2} - 9x}}\) và \(\frac{{x - 4}}{{36{x^3} - 12{x^2}}}\).

Phương pháp giải:

Bước 1: Ta phân tích mẫu thức của mỗi phân thức thành nhân tử.

Bước 2: Mẫu thức chung cần tìm là một tích mà các nhân tử được chọn như sau:

- Nhân tử bằng số của mẫu thức chung là tích của các nhân tử bằng số của các mẫu thức ở bước 1

- Với mỗi lũy thừa của cùng một biểu thức có mặt trong các mẫu thức, ta chọn lũy thừa với số mũ cao nhất.

Lời giải chi tiết:

Ta thấy \(27{x^2} - 9x = 9x\left( {3x - 1} \right)\) và \(36{x^3} - 12{x^2} = 12{x^2}\left( {3x - 1} \right)\)

Vậy mẫu thức chung của hai phân thức có thể là \(36{x^2}\left( {3x - 1} \right)\)


Hoạt động 2

Muốn quy đồng hai phân thức \(\frac{{2x + 3}}{{27{x^2} - 9x}}\) và \(\frac{{x - 4}}{{36{x^3} - 12{x^2}}}\) nêu trong luyện tập 1 thì cần nhân cả tử và mẫu của mỗi phân thức với đa thức nào?

Phương pháp giải:

Ta tìm mẫu thức chung:

Bước 1: Ta phân tích mẫu thức của mỗi phân thức thành nhân tử.

Bước 2: Mẫu thức chung cần tìm là một tích mà các nhân tử được chọn như sau:

- Nhân tử bằng số của mẫu thức chung là tích của các nhân tử bằng số của các mẫu thức ở bước 1

- Với mỗi lũy thừa của cùng một biểu thức có mặt trong các mẫu thức, ta chọn lũy thừa với số mũ cao nhất.

Lời giải chi tiết:

Ta có: \(27{x^2} - 9x = 9x\left( {3x - 1} \right)\); \(36{x^3} - 12{x^2} = 12{x^2}\left( {3x - 1} \right)\)

Vậy mẫu thức chung là: \(36{x^2}\left( {3x - 1} \right)\)

Để quy đồng hai phân thức \(\frac{{2x + 3}}{{27{x^2} - 9x}}\) và \(\frac{{x - 4}}{{36{x^3} - 12{x^2}}}\) ta cần nhân cả tử và mẫu của phân thức \(\frac{{2x + 3}}{{27{x^2} - 9x}}\)với \(4x\) và nhân cả tử và mẫu của phân thức \(\frac{{x - 4}}{{36{x^3} - 12{x^2}}}\)với \(3\)


Luyện tập 2

Quy đồng mẫu thức hai phân thức \(\frac{{x + 1}}{{4{x^3} - 8{x^2}}}\) và \(\frac{{2x - 3}}{{6x{{\left( {x - 2} \right)}^2}}}\).

Phương pháp giải:

Ta tìm mẫu thức chung

Tìm nhân tử phụ của mỗi mẫu thức;

Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết:

Hai phân thức có mẫu thức chung là \(12{x^2}{\left( {x - 2} \right)^2}\)

Ta có \(\frac{{x + 1}}{{4{x^3} - 8{x^2}}} = \frac{{x + 1}}{{4{x^2}\left( {x - 2} \right)}} = \frac{{\left( {x + 1} \right).3.\left( {x - 2} \right)}}{{4{x^2}\left( {x - 2} \right).3.\left( {x - 2} \right)}} = \frac{{3\left( {x - 1} \right)\left( {x - 2} \right)}}{{12{x^2}{{\left( {x - 2} \right)}^2}}}\)

\(\frac{{2x - 3}}{{6x{{\left( {x - 2} \right)}^2}}} = \frac{{\left( {2x - 3} \right).2x}}{{6x{{\left( {x - 2} \right)}^2}.2x}} = \frac{{2x\left( {2x - 3} \right)}}{{12{x^2}{{\left( {x - 2} \right)}^2}}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"