Giải bài 2.21 trang 50 SGK Toán 8 - Cùng khám phá

2024-09-14 08:34:16

Đề bài

Rút gọn biểu thức sau theo hai cách (sử dụng và không sử dụng tính chất phân phối của phép nhân đối với phép cộng): \(\frac{{x + 1}}{x}.\left( {{x^2} - x + 1 - \frac{{{x^2}}}{{x + 1}}} \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng và không sử dụng tính chất phân phối của phép nhân đối với phép cộng để rút gọn biểu thức thành hai cách.

Lời giải chi tiết

Cách 1:

\(\begin{array}{l}\frac{{x + 1}}{x}.\left( {{x^2} - x + 1 - \frac{{{x^2}}}{{x + 1}}} \right)\\ = \frac{{x + 1}}{x}.\left( {\frac{{{x^2}\left( {x + 1} \right)}}{{x + 1}} - \frac{{x\left( {x + 1} \right)}}{{x + 1}} + \frac{{x + 1}}{{x + 1}} - \frac{{{x^2}}}{{x + 1}}} \right)\\ = \frac{{x + 1}}{x}.\left( {\frac{{{x^3} + {x^2} - {x^2} - x + x + 1 - {x^2}}}{{x + 1}}} \right)\\ = \frac{{x + 1}}{x}.\left( {\frac{{{x^3} - {x^2} + 1}}{{x + 1}}} \right) = \frac{{\left( {x + 1} \right)\left( {{x^3} - {x^2} + 1} \right)}}{{x.\left( {x + 1} \right)}} = \frac{{{x^3} - {x^2} + 1}}{x}\end{array}\)

Cách 2:

\(\begin{array}{l}\frac{{x + 1}}{x}.\left( {{x^2} - x + 1 - \frac{{{x^2}}}{{x + 1}}} \right)\\ = \frac{{x + 1}}{x}.{x^2} - \frac{{x + 1}}{x}.x + \frac{{x + 1}}{x} - \frac{{x + 1}}{x}.\frac{{{x^2}}}{{x + 1}}\\ = x\left( {x + 1} \right) - \left( {x + 1} \right) + \frac{{x + 1}}{x} - x\\ = {x^2} + x - x - 1 + \frac{{x + 1}}{x} - x\\ = {x^2} - 1 - x + \frac{{x + 1}}{x}\\ = \frac{{{x^3} - x - {x^2} + x + 1}}{x} = \frac{{{x^3} - {x^2} + 1}}{x}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"